Answer:

Explanation:
As we know that the mass is revolving with constant angular speed in the circle of radius R
So we will have

now the position vector at a given time is

now the linear velocity is given as



Answer:
For a velocity versus time graph how do you know what the velocity is at a certain time?
Ans: By drawing a line parallel to the y axis (Velocity axis) and perpendicular to the co-ordinate of the Time on the x axis (Time Axis). The point on the slope of the graph where this line intersects, will be the desired velocity at the certain time.
_____________________________________________________
How do you know the acceleration at a certain time?

Hence,
By dividing the difference of the Final and Initial Velocity by the Time Taken, we could find the acceleration.
_________________________________________________________
How do you know the Displacement at a certain time?
Ans: As Displacement equals to the area enclosed by the slope of the Velocity-Time Graph, By finding the area under the slope till the perpendicular at the desired time, we find the Displacement.
_________________________________________________________
During the ball's flight up its velocity and acceleration vectors are in opposite direction and during the ball's flight down its velocity and acceleration vectors are in same direction.
- The velocity vector is always in the direction of motion of the object. So, during the ball's flight up its velocity vector is in the upward direction (90°) and during the ball's flight down its velocity vector is in the downward direction (270°).
- When there is a positive acceleration in the object the acceleration vector is in the direction of motion of the object. When there is a negative acceleration in the object the acceleration vector is in the opposite direction of motion of the object. So, during the ball's flight up its acceleration vector is in the downward direction (270°) and during the ball's flight down its acceleration vector is in the upward direction (90°).
Velocity vector is the rate of change of position of an object. Acceleration vector is the rate of change of velocity of an object.
Therefore, during the ball's flight up its velocity and acceleration vectors are in opposite direction and during the ball's flight down its velocity and acceleration vectors are in same direction.
To know more about velocity and acceleration vectors
brainly.com/question/13492374
#SPJ4
The fundamental closeness is they have a similar like charges repulse each other, distinctive charges pull in each other. While their distinction is that attractive "charges" can't be isolated. At any rate, so far it has not been accomplished. I trust this makes a difference.
On a planet/celestial body with gravity, the acceleration of gravity is the same for everything. Therefore, all three options are correct.
Hope this helps!