The question is incomplete. The complete question is :
A spherical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.0x10-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.0x10-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass transfer coefficient (m/s) and the dissolution rate (kg/s).
Solution :
From flow over sphere, the mass transfer equation can be written as :

where, Sherood number, 
Reynolds number, 
Schmid number, 
So,

Diameter, d = 1 cm =
m
V = 1 m/s





m/s
So the mass transfer coefficient is 9.5644
m/s. It is given solubility,



kg/s (dissolution rate)
Answer:
2.1 m/s
Explanation:
According to law of conservation of momentum;
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the common velocity
Given
m1 = 2150kg
m2 = 3250kg
u1 = 10.0m/s
u2 = ?
v = 5.22m/s
Substitute and get u2
2150(10) + 3250u2 = (2150+3250)5.22
21,500 + 3250u2 = 5400(5.22)
3250u2 = 28,188 - 21500
3250u2 = 6688
u2 = 6688/3250
u2 = 2.1 m/s
Hence the 3250 kg car’s initial velocity has an initial velocity of 2.1 m/s
Let’s do this together!
Okay so the acceleration formula is vf-vi over time .
So the initial velocity (vi) 7m/s final velocity (vf) is 16m/s so we’re going to subtract 16-7 which is 9
M/s
So the time is 5s so 9m/s divided into 5s is 1.8m/s/2
So the answer is 1.8m\s2
The frequency for a fundamental pipe is given as:
f = v/4L
L is equal to the length of the pipe
Since L = Lo/2 where Lo is the original length of the pipe, the
new frequency would be:
f = (v/4)/(Lo/2)
f = 2 (v/4Lo)
Since v/4Lo = fo, therefore:
f = 2 fo
If it;s a good insulator, there'll be no heat transfer warm to cold. So, over time, given the insulation ... nothing should happen ...