Let b be the number of blue beads and g the number of green beads that Giovanni can use for a belt.
He's supposed to use a total of between 70 and 74 beads, so
70 ≤ b + g ≤ 74
The ratio of green beads to blue beads is g/b, and this ratio has to be between 1.4 and 1.6, so
1.4 ≤ g/b ≤ 1.6
For completeness, Giovanni must use at least one of either bead color, so it sort of goes without saying that this system must also include the conditions
b ≥ 0
g ≥ 0
(These conditions "go without saying" because they are implied by the others. g/b is a positive number, so either both b and g are positive, or they're both negative. But they must both be positive, because otherwise b + g would be negative. I would argue for including them, though.)
Commutative property of addition
Answer:
The 5-hour decay factor for the number of mg of caffeine in Ben's body is of 0.1469.
Step-by-step explanation:
After consuming the energy drink, the amount of caffeine in Ben's body decreases exponentially.
This means that the amount of caffeine after t hours is given by:

In which A(0) is the initial amount and k is the decay rate, as a decimal.
The 10-hour decay factor for the number of mg of caffeine in Ben's body is 0.2722.
1 - 0.2722 = 0.7278, thus,
. We use this to find k.







Then

What is the 5-hour growth/decay factor for the number of mg of caffeine in Ben's body?
We have to find find A(5), as a function of A(0). So


The decay factor is:
1 - 0.8531 = 0.1469
The 5-hour decay factor for the number of mg of caffeine in Ben's body is of 0.1469.