1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
2 years ago
13

A car that weighs 1.0 x 10^4 N is initially moving at a speed of 38 km/h when the brakes are applied and the car is brought to a

stop in 20 m. Assuming that the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)
Physics
1 answer:
hram777 [196]2 years ago
8 0

Answer:

Part a) Force on car = 2833.84 Newtons

Part b) Time to stop the car = 3.8 seconds

Part c) Factor for stopping distance is 4.

Part d) Factor for stopping time is 1.

Explanation:

The deceleration produced when the car is brought to rest in 20 meters can be found by third equation of kinematics as

v^2=u^2+2as

where

v = final speed of the car ( = 0 in our case since the car stops)

u = initial speed of the car = 38 km/hr =\frac{38\times 1000}{3600}=10.56m/s

a = deceleration produces

s = distance in which the car stops

Applying the given values we get

0^2=10.56^2+2\times a\times 20\\\\a=\frac{0-10.56^2}{2\times 20}\\\\\therefore a=-2.78m/s^2

Now the force can be obtained using newton's second law as

Force=\frac{Weight}{g}\times a

Applying values we get

Force=\frac{1.0\times 10^4}{9.81}\times -2.78\\\\\therefore F=-2833.84Newtons

The negative direction indicates that the force is opposite to the motion of the object.

Part b)

The time required to stop the car can be found using the first equation of kinematics as

v=u+at with symbols having the same meanings

Applying values we get

0=10.56-2.78\times t\\\\\therefore t=\frac{10.56}{2.78}=3.8seconds

Part c)

From the developed relation of stopping distance we can see that the for same force( Same acceleration) the stopping distance is proportional to the square of the initial speed thus doubling the initial speed increases the stopping distance 4 times.

Part d)

From the relation of stopping time and the initial speed we can see that the stopping distance is proportional initial speed thus if we double the initial speed the stopping time also doubles.

You might be interested in
Why can't you feel rhe force of attraction between you and mars
NISA [10]
Because Mars is too far away for its gravitational pull to affect us, in addition Earths gravitational pull is greater than Mars anyways. 
4 0
3 years ago
Does the mass of a pendulum affects the period of oscillation
pshichka [43]
Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
8 0
2 years ago
In which type of bone does ossification occur in the membranes?
Afina-wow [57]
In the formation of flat bones such as the skull the mandibles and the clavicles  
3 0
3 years ago
E14. A ball rolls off a table with a horizontal velocity of 5 m/s. If
Shkiper50 [21]

a) Vertical velocity: 5.9 m/s

b) Horizontal velocity: 5 m/s

Explanation:

a)

The motion of the ball is the motion of a projectile, which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction)

- A uniformly accelerated motion (constant acceleration) along the vertical direction

Here we want to find the vertical component of the ball's velocity. This can be done by using the suvat equation for the vertical motion:

v_y = u_y +gt

where:

v_y is the vertical velocity at time t

u_y=0 is the initial vertical velocity (zero because the ball has been thrown horizontally)

g=10 m/s^2 is the acceleration of gravity (here we take downward as positive direction)

Substituting t = 0.6 s, which is the total time of flight, we find the vertical velocity of the ball just before it hits the ground:

v_y=0+(9.8)(0.6)=5.9 m/s

b)

The motion along the vertical direction is an accelerated motion, because there is a force (the force of gravity) acting on the ball and that it causes an acceleration in the ball.

However, there are no forces acting in the horizontal direction on the ball (if we neglect the air resistance): this means that the acceleration of the ball in the horizontal direction is zero.

As a consequence, this also means that the horizontal component of the ball's velocity is constant during the motion.

Since the ball was thrown from the table with an initial horizontal velocity of 5 m/s, this means that the horizontal velocity of the ball just before it hits the floor is still

v_x =  5 m/s

8 0
3 years ago
Creates an image that appears upside down behind the focal point
zheka24 [161]
An image that appears upside down behind the focal point is an image that is reflected on a concave mirror. Mirrors reflect different kinds of images based on the placement of an object that is reflected towards it. There are two kinds of mirrors, concave and a convex mirrors, the latter makes objects seem smaller and farther than where it is exactly.
8 0
3 years ago
Other questions:
  • In order to fly horizonatally at a steady speed, which two of the forces shown on the aeroplane must be equal.
    14·1 answer
  • Limestone is an example of
    14·1 answer
  • A metaphor is:
    5·1 answer
  • A student is helping her teacher move a 9.5 kg box of books. What net sideways force must she exert on the box to slide it acros
    6·1 answer
  • What is one way homeostasis benefits living organisms?
    15·2 answers
  • PLEASE HELP ASAP I'LL GIVE BRAINLY!!
    14·1 answer
  • TRUE OR FALSE: Aquaponics decreases cost for equipment, energy usage, and land usage. *
    15·2 answers
  • In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of
    7·1 answer
  • Which of the following is a definition of acceleration? *
    8·1 answer
  • You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its diameter to be 1.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!