Answer:
Closely fits into the connector.
Explanation:
It's one of the steps used for the splicing of aluminium conductors in the underground connections. Where we do the strip insulation to splice the conductors by using compression type connectors.
Answer:
c
Explanation:
it's the only one that makes sense
Answer:
The answer is 2,416 m/s. Let's jump in.
Explanation:
We do work with the amount of energy we can transfer to objects. According to energy theory:
W = ΔE
Also as we know W = F.x
We choose our reference point as a horizontal line at the block's rest point.<u> At the rest, block doesn't have kinetic energy</u> and <u>since it is on the reference point(as we decided) it also has no potential energy.</u>
Under the force block gains;
W = F.x → 
In the second position block has both kinetic and potential energy. Following the law of conservation of energy;
W = ΔE = Kinetic energy + Potantial Energy
W = ΔE = 
Here we can find h in the triangle i draw in the picture using sine theorem;
In a triangle 
In our situation
→ 
Therefore

→ 
Answer:
Explanation:
α = (ωf - ωi)/t
acceleration phase
ωf = 132 rev/min (2π rad/rev / 60 s/min) = 4.4π rad/s
α₁ = (4.4π - 0)/20 = 0.22π rad/s²
α₂ = (0 - 4.4π)/40 = - 0.11π rad/s²
α₁/α₂ = 0.22π/- 0.11π = -2