The concepts used to solve this exercise are given through the calculation of distances (from the Moon to the earth and vice versa) as well as the gravitational potential energy.
By definition the gravitational potential energy is given by,

Where,
m = Mass of Moon
G = Gravitational Universal Constant
M = Mass of Ocean
r = Radius
First we calculate the mass through the ratio given by density.



PART A) Gravitational potential energy of the Moon–Pacific Ocean system when the Pacific is facing away from the Moon
Now we define the radius at the most distant point

Then the potential energy at this point would be,



PART B) when Earth has rotated so that the Pacific Ocean faces toward the Moon.
At the nearest point we perform the same as the previous process, we calculate the radius

The we calculate the Potential gravitational energy,



Answer:
A. False
B True
C. False
D.False
E. True
F. False
G. False
H. False
I. True
Explanation:
A. False: The system being analyzed consists of the bug and the car. These are the two bodies involved in the collision.
B. True: The system being analyzed consists of the bug and the car
C. False: The magnitudes of the change in velocity are different from the car and the bug. The velocity of the bug changes from 0 to the velocity of the car, while there is no noticeable change in the velocity of the car
D.False: There is barely any change in the momentum of the car since the mass of the bug is very small.
E. True: Since the mass of the bug is small, and was initially at rest, the magnitude of the change in monentum will be large because the new velocity will be that of the car.
F. False: The system being analyzed consists of the bug and the car. Those are the two bodies involved in the collision
G. False: The car barely changes in velocity since the mass of the bug is small.
H. False: The car barely changes in momentum because the collision does not affect its speed so much. on the other hand the momentum change of the bug is large since its mass is small.
I. True: The bug which was initially at rest will begin moving with the velovity of the speeding car, while the car barely changes in its velocity
Answer: 10%
Explanation:
n this case, if the earth' mass goes up by 10%, then the force of gravity on you, or your weight, will increase by the same amount, that is 10%
Power is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. <span>As is implied by the equation for </span>power<span>, a unit of </span>power <span>is equivalent to a unit of work divided by a unit of time. The formula would be as follows:
P = W/t
We calculate as follows:
500 W = 15000 J / t
t = 30 s</span>
Answer:
Force is defined as a push or pull acting on an object. Forces include gravity, friction, and applied force. Force causes changes in the speed or direction of motion. These changes are called acceleration.
Explanation: