False, atoms can not be created that way
Explanation:
The reaction equation will be as follows.

Calculate the amount of
dissolved as follows.

It is given that
= 0.032 M/atm and
=
atm.
Hence,
will be calculated as follows.
=
= 
= 
or, = 
It is given that 
As, ![K_{a} = \frac{[H^{+}]^{2}}{[CO_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%7D%7B%5BCO_%7B2%7D%5D%7D)
= 
= 
Since, we know that pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, pH = 
= 5.7
Therefore, we can conclude that pH of water in equilibrium with the atmosphere is 5.7.
Explanation:
The chemical reaction given in the question is as follows -
MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)
NO₃⁻ (aq) + 4H⁺ (aq) + 3e⁻ → NO (g) + 2H₂O (l)
As we know , the value for reduction potential are -
Mn²⁺ = + 1.51 V
NO₃⁻ = +0.96 V
From , the data given above , the value of the reduction potential of NO₃⁻ is less than the reduction potential of Mn²⁺ .
Hence ,
NO₃⁻ can not oxidize Mn²⁺ .
Answer:
Western Pacific, such as the Philippines, Guam, southeast Asia (including China and Taiwan) and Japan.
Explanation:
If a substance has a relatively low melting point (below 400ºF), then it is either molecular polar or molecular non-polar
If a substance has a high melting point, then it is either metallic, covalent network, or ionic
The stronger a substance’s bonds, the higher its melting point