a chemical property of iron is the ability to change it, hammer it, roll it, shape it etc
1. mol ratio of Al(NO₃)₃ : Na₂CO₃ = 2 : 3
2. Na₂CO₃ as a limiting reactant
<h3>Further explanation</h3>
Given
Reaction
2 Al(NO₃)₃ + 3 Na₂CO₃ → Al₂(CO₃)₃ + 6 NaNO₃
Required
mol ratio
Limiting reactant
Solution
The reaction coefficient in the chemical equation shows the mole ratio of the components of the compound involved in the reaction (reactants and products)
1. From the equation mol ratio of Al(NO₃)₃ : Na₂CO₃ = 2 : 3
2. mol : coefficient of Al(NO₃)₃ : Na₂CO₃ = 2 mole/2 : 2 mole/3 = 1 : 0.67
Na₂CO₃ as a limiting reactant (smaller)
H2SO4 + Na2CO3 → Na2SO4 + CO2 + H2O
The molarity of sulfuric acid if 1.78 L were used in the above reaction is
0.453 M (answer 2)
Calculation
find the moles of water produced = mass/molar mass
= 14.5 g /18 g/mol = 0.806 moles
by use of of mole ratio between H2So4 to H2O which is 1:1 the moles of H2SO4 is also = 0.806 moles
Molarity of H2SO4 is therefore = moles/volume in liters
= 0.806 mol/ 1.78 L = 0.453 M (answer 2)
To obey the Law of Conservation of Mass, the sum of all individual elements of a compound is equal to the mass of the compound. So, if HCN has a mass of 7.83 grams, then
7.83 g = mass of H + mass of C + mass of N
We know the masses of H and N to be 0.290 g and 4.06 g, respectively. Hence, we can find for the mass of C:
7.83 = 0.29 + mass of C + 4.06
mass of C = 3.48 g
As an extension to the Law of Conservation of Mass, there is also a Law of Definite Proportions. According to Dalton's atomic theory, a compound is formed from a fixed ratio of its individual elements. From our previous calculations, we know that the mass ratio of H to C to N is 0.29 g: 3.48 g:4.06 grams. The ratio could also be expressed in percentages. Let's find the mass percentage of Carbon in HCN to be used later:
mass % of Carbon = (3.48 g/7.83 g)*100
mass % of Carbon = 44.44%
So, if you collect a different mass of HCN, say 3.37 g, the corresponding mass of Carbon is equal to:
Mass of Carbon = (3.37)(44.44%)
Mass of Carbon = 1.498 g
B). Have a variable volume, meaning they fill up the area they are in.