1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
4 years ago
14

Can someone give me the answer and solution plz

Mathematics
1 answer:
Masteriza [31]4 years ago
5 0

Answer: May.

Step-by-step explanation:

The chart has its highest rabbit population at January and October, so it would not be either of those because it is asking for the smallest, checking the red line and the numbers next to it, may would have the absolute smallest population around 450.

You might be interested in
4. What is the result of 3^2x-5x+1 from 8x^2 -2x-9?
lina2011 [118]

Answer:

a)  5 x² + 3 x -10

Step-by-step explanation:

<u><em>Explanation:-</em></u>

Given polynomials

        3 x² - 5 x + 1   and 8 x² - 2 x -9

Given that  

         3 x² - 5 x + 1   From 8 x² - 2 x -9

  ⇒   8 x² - 2 x -9 - (  3 x² - 5 x + 1  )

  =    8 x² - 2 x -9 - 3 x² + 5 x - 1

  =    5 x² + 3 x -10

 

4 0
3 years ago
37. Verify Green's theorem in the plane for f (3x2- 8y2) dx + (4y - 6xy) dy, where C is the boundary of the
Nastasia [14]

I'll only look at (37) here, since

• (38) was addressed in 24438105

• (39) was addressed in 24434477

• (40) and (41) were both addressed in 24434541

In both parts, we're considering the line integral

\displaystyle \int_C (3x^2-8y^2)\,\mathrm dx + (4y-6xy)\,\mathrm dy

and I assume <em>C</em> has a positive orientation in both cases

(a) It looks like the region has the curves <em>y</em> = <em>x</em> and <em>y</em> = <em>x</em> ² as its boundary***, so that the interior of <em>C</em> is the set <em>D</em> given by

D = \left\{(x,y) \mid 0\le x\le1 \text{ and }x^2\le y\le x\right\}

• Compute the line integral directly by splitting up <em>C</em> into two component curves,

<em>C₁ </em>: <em>x</em> = <em>t</em> and <em>y</em> = <em>t</em> ² with 0 ≤ <em>t</em> ≤ 1

<em>C₂</em> : <em>x</em> = 1 - <em>t</em> and <em>y</em> = 1 - <em>t</em> with 0 ≤ <em>t</em> ≤ 1

Then

\displaystyle \int_C = \int_{C_1} + \int_{C_2} \\\\ = \int_0^1 \left((3t^2-8t^4)+(4t^2-6t^3)(2t))\right)\,\mathrm dt \\+ \int_0^1 \left((-5(1-t)^2)(-1)+(4(1-t)-6(1-t)^2)(-1)\right)\,\mathrm dt \\\\ = \int_0^1 (7-18t+14t^2+8t^3-20t^4)\,\mathrm dt = \boxed{\frac23}

*** Obviously this interpretation is incorrect if the solution is supposed to be 3/2, so make the appropriate adjustment when you work this out for yourself.

• Compute the same integral using Green's theorem:

\displaystyle \int_C (3x^2-8y^2)\,\mathrm dx + (4y-6xy)\,\mathrm dy = \iint_D \frac{\partial(4y-6xy)}{\partial x} - \frac{\partial(3x^2-8y^2)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = \int_0^1\int_{x^2}^x 10y\,\mathrm dy\,\mathrm dx = \boxed{\frac23}

(b) <em>C</em> is the boundary of the region

D = \left\{(x,y) \mid 0\le x\le 1\text{ and }0\le y\le1-x\right\}

• Compute the line integral directly, splitting up <em>C</em> into 3 components,

<em>C₁</em> : <em>x</em> = <em>t</em> and <em>y</em> = 0 with 0 ≤ <em>t</em> ≤ 1

<em>C₂</em> : <em>x</em> = 1 - <em>t</em> and <em>y</em> = <em>t</em> with 0 ≤ <em>t</em> ≤ 1

<em>C₃</em> : <em>x</em> = 0 and <em>y</em> = 1 - <em>t</em> with 0 ≤ <em>t</em> ≤ 1

Then

\displaystyle \int_C = \int_{C_1} + \int_{C_2} + \int_{C_3} \\\\ = \int_0^1 3t^2\,\mathrm dt + \int_0^1 (11t^2+4t-3)\,\mathrm dt + \int_0^1(4t-4)\,\mathrm dt \\\\ = \int_0^1 (14t^2+8t-7)\,\mathrm dt = \boxed{\frac53}

• Using Green's theorem:

\displaystyle \int_C (3x^2-8y^2)\,\mathrm dx + (4y-6xy)\,\mathrm dx = \int_0^1\int_0^{1-x}10y\,\mathrm dy\,\mathrm dx = \boxed{\frac53}

4 0
3 years ago
Henry says that his set of numbers includes all integers. Iliana argues that he is wrong.
Rudiy27

B. Iliana is correct because Henry included a fraction. Fractions are not integers.

5 0
3 years ago
Read 2 more answers
A piece of wire 19 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral tria
mr Goodwill [35]

Answer: 8.26 m

Step-by-step explanation:

$$Let s be the length of the wire used for the square. \\Let $t$ be the length of the wire used for the triangle. \\Let $A_{S}$ be the area of the square. \\Let ${A}_{T}}$ be the area of the triangle. \\One side of the square is $\frac{s}{4}$ \\Therefore,we know that,$$A_{S}=\left(\frac{s}{4}\right)^{2}=\frac{s^{2}}{16}$$

$$The formula for the area of an equilateral triangle is, $A=\frac{\sqrt{3}}{4} a^{2}$ where $a$ is the length of one side,And one side of our triangle is $\frac{t}{3}$So,We know that,$$A_{T}=\frac{\sqrt{3}}{4}\left(\frac{t}{3}\right)^{2}$$We have to find the value of "s" such that,$\mathrm{s}+\mathrm{t}=19$ hence, $\mathrm{t}=19-\mathrm{s}$And$$A_{S}+A_{T}=A_{S+T}$$

$$Therefore,$$\begin{aligned}&A_{T}=\frac{\sqrt{3}}{4}\left(\frac{(19-s)}{3}\right)^{2}=\frac{\sqrt{3}(19-s)^{2}}{36} \\&A_{T+S}=\frac{s^{2}}{16}+\frac{\sqrt{3}(19-s)^{2}}{36}\end{aligned}

$$Differentiating the above equation with respect to s we get,$$A^{\prime}{ }_{T+S}=\frac{s}{8}-\frac{\sqrt{3}(19-s)}{18}$$Now we solve $A_{S+T}^{\prime}=0$$$\begin{aligned}&\Rightarrow \frac{s}{8}-\frac{\sqrt{3}(19-s)}{18}=0 \\&\Rightarrow \frac{s}{8}=\frac{\sqrt{3}(19-s)}{18}\end{aligned}$$Cross multiply,$$\begin{aligned}&18 s=8 \sqrt{3}(19-s) \\&18 s=152 \sqrt{3}-8 \sqrt{3} s \\&(18+8 \sqrt{3}) s=152 \sqrt{3} \\&s=\frac{152 \sqrt{3}}{(18+8 \sqrt{3})} \approx 8.26\end{aligned}$$

$$The domain of $s$ is $[0,19]$.So the endpoints are 0 and 19$$\begin{aligned}&A_{T+S}(0)=\frac{0^{2}}{16}+\frac{\sqrt{3}(19-0)^{2}}{36} \approx 17.36 \\&A_{T+S}(8.26)=\frac{8.26^{2}}{16}+\frac{\sqrt{3}(19-8.26)^{2}}{36} \approx 9.81 \\&A_{T+S}(19)=\frac{19^{2}}{16}+\frac{\sqrt{3}(19-19)^{2}}{36}=22.56\end{aligned}$$

$$Therefore, for the minimum area, $8.26 \mathrm{~m}$ should be used for the square

8 0
2 years ago
HALLAR EL DOMINIO E IMAGEN DE LAS SIGUIENTES FUNCION<br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7Bz%3F%7D%20x-4" id=
Alla [95]

Answer:

183i2i2i822i81829838

3 0
3 years ago
Other questions:
  • Cylinder A has a radius of 12 inches and a height of 6 inches. Cylinder B has a volume of 648π. What is the percent change in vo
    13·2 answers
  • Yuna missed 5 points out of 100 points on her math test.What decimal number represents the part of her math test that she answer
    13·1 answer
  • Estimate sum or difference
    9·1 answer
  • A rectangular prismhas a volume of 160 the height of the prism is 5 the length is twice the width what are the dimensions of the
    14·1 answer
  • 8 ala quinta potencia del 8/​
    13·1 answer
  • How do you multiply (2r^2 5r-1)(5r^2 2r-8)?
    5·1 answer
  • Ava buys a book for $8.58. She pays with a $10 bill. How much change will she get?
    11·2 answers
  • If a man walks 150m down the street, stops to ask for directions, then walks 1 point
    9·1 answer
  • Can you guys help meh pls
    14·1 answer
  • I need to know what formula to use in order to figure out the problems. You do not have to solve, I can do that. I just need a f
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!