C. 18.88 centimeters. Because with a tilted radius of 5.7. It ranges up. So it would be a higher number SLIGHTLY.
Hope this helps.
I think it would be C because the equation is y=7x. y=7x is also equal to x=1/7y. If y=45.50, then you would have to divide y by 7, which would equal 6.5.
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
d = r * t
d/t = r
-35.75 / 3.25 = r
-11 = r
r = -11 ft / min
d = r*t
d = -11 ft/min * 1 min
d = -11 ft
The probe is 11 feet below sea level after 1 minute
The answer is 18
2 to the 3rd power would be 2*2*2 which is 8
8 x 4=32
32/2=16
16+2=18