Answer:
0.146 m
Explanation:
f = -KΔL according to Hooke's law
volume of water displaced = mass / density of block since a body will displace equal volume of its own
weight of water displaced = mass of water × acceleration due to gravity
and mass of water = volume of water / density of water
weight of water displaced = Vw × dw × g = mg (dw / dblock)
net force = mg - mg (dw / dblock) = 42.728 - 65.74 = -23.00
it will be balanced by a restoring force of 23 N
ΔL = F / k = 23 / 158 = 0.146 m
Answer:
X₃₁ = 0.58 m and X₃₂ = -1.38 m
Explanation:
For this exercise we use Newton's second law where the force is the Coulomb force
F₁₃ - F₂₃ = 0
F₁₃ = F₂₃
Since all charges are of the same sign, forces are repulsive
F₁₃ = k q₁ q₃ / r₁₃²
F₂₃ = k q₂ q₃ / r₂₃²
Let's find the distances
r₁₃ = x₃- 0
r₂₃ = 2 –x₃
We substitute
k q q / x₃² = k 4q q / (2-x₃)²
q² (2 - x₃)² = 4 q² x₃²
4- 4x₃ + x₃² = 4 x₃²
5x₃² + 4 x₃ - 4 = 0
We solve the quadratic equation
x₃ = [-4 ±√(16 - 4 5 (-4)) ] / 2 5
x₃ = [-4 ± 9.80] 10
X₃₁ = 0.58 m
X₃₂ = -1.38 m
For this two distance it is given that the two forces are equal
Here is my step-by-step-work. Let me know if you have any questions! :)
To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
Answer:
I think its object 1
Explanation:
Because the object that has more weight has a greater momentum and the lightest object that has a less momentum will be easier to change because its lighter.