1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
9

What substance can be used to electrolyze water?

Physics
1 answer:
lubasha [3.4K]3 years ago
6 0
C/any electrolyte that is not easily reduced or oxidized
You might be interested in
Standing at a crosswalk, you hear a frequency of 550 Hz from the siren of an approaching ambulance. After the ambulance passes,
FromTheMoon [43]

There are six steps to this process , I uploaded step one and as you can see you can get all six on Quizlet:). Good luck

6 0
3 years ago
Consider a concave spherical mirr or that has focal length f = +19.5 cm.
lidiya [134]

The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.

<h3>What is concave mirror?</h3>

A concave mirror has a reflective surface that is curved inward and away from the light source.

Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.

<h3>Object distance of the concave mirror</h3>

Apply mirrors formula as shown below;

1/f = 1/v + 1/u

where;

  • f is the focal length of the mirror
  • v is the object distance
  • u is the image distance

when image height = object height, magnification = 1

u/v = 1

v = u

Substitute the given parameters and solve for the distance of the object from the mirror's vertex

1/f = 1/v + 1/v

1/f = 2/v

v = 2f

v = 2(19.5 cm)

v = 39 cm

Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.

Learn more about concave mirror here: brainly.com/question/27841226

#SPJ1

7 0
2 years ago
Block A has a mass of 0.5kg, and block B has a mass of 2kg. Block is is released at a height of 0.75 meters above B. The coeffic
VikaD [51]

Answer:

0.075 m

Explanation:

The picture of the problem is missing: find it in attachment.

At first, block A is released at a distance of

h = 0.75 m

above block B. According to the law of conservation of energy, its initial potential energy is converted into kinetic energy, so we can write:

m_Agh=\frac{1}{2}m_Av_A^2

where

g=9.8 m/s^2 is the acceleration due to gravity

m_A=0.5 kg is the mass of the block

v_A is the speed of the block A just before touching block B

Solving for the speed,

v_A=\sqrt{2gh}=\sqrt{2(9.8)(0.75)}=3.83 m/s

Then, block A collides with block B. The coefficient of restitution in the collision is given by:

e=\frac{v'_B-v'_A}{v_A-v_B}

where:

e = 0.7 is the coefficient of restitution in this case

v_B' is the final velocity of block B

v_A' is the final velocity of block A

v_A=3.83 m/s

v_B=0 is the initial velocity of block B

Solving,

v_B'-v_A'=e(v_A-v_B)=0.7(3.83)=2.68 m/s

Re-arranging it,

v_A'=v_B'-2.68 (1)

Also, the total momentum must be conserved, so we can write:

m_A v_A + m_B v_B = m_A v'_A + m_B v'_B

where

m_B=2 kg

And substituting (1) and all the other values,

m_A v_A = m_A (v_B'-2.68) + m_B v_B'\\v_B' = \frac{m_A v_A +2.68 m_A}{m_A + m_B}=1.30 m/s

This is the velocity of block B after the collision. Then, its kinetic energy is converted into elastic potential energy of the spring when it comes to rest, according to

\frac{1}{2}m_B v_B'^2 = \frac{1}{2}kx^2

where

k = 600 N/m is the spring constant

x is the compression of the spring

And solving for x,

x=\sqrt{\frac{mv^2}{k}}=\sqrt{\frac{(2)(1.30)^2}{600}}=0.075 m

5 0
3 years ago
The discovery of which particle proved that the atom is not indivisible?
Blababa [14]
Maybe cuz your fat fat biches
8 0
3 years ago
You have a string with a mass of 0.0127 kg. You stretch the string with a force of 9.33 N, giving it a length of 1.93 m. Then, y
melomori [17]

Answer:

wavelength = 0.968 m

frequency = 39.02 Hz

Explanation:

given data

mass = 0.0127 kg

force = 9.33 N

length = 1.93 m

to find out

wavelength and Frequency

solution

we know here linear density that is

linear density = \frac{mass}{length}   .........1

linear density = \frac{0.0127}{1.93}

linear density = 6.5803 × 10^{-3} kg/m

so

wavelength will be here

wavelength = \frac{2L}{n}   ..............2

here n = 4 for forth harmonic

wavelength = \frac{2*1.93}{4}

wavelength = 0.968 m

and

frequency will be for 4th normal mode of vibration is

frequency = \frac{4}{2L} \sqrt{\frac{tension}{linear\ density} }    ..........3

frequency = \frac{4}{2*1.93} \sqrt{\frac{9.33}{6.5803*10^{-3}} }

frequency = 1.036269 × 37.654594

frequency = 39.02 Hz

5 0
3 years ago
Other questions:
  • What is the period of a wave traveling 5 m/s if its wavelength is 20 m/s
    15·1 answer
  • An object undergoes two successive displacements:
    12·1 answer
  • You could use an elevator or the stairs to lift a box to tenth floor.which has greater power?
    12·1 answer
  • 1. Suppose you have a metal bar. Its mass is 57.9g and its volume is 3cm'. What is its<br> density?
    6·1 answer
  • A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 1
    15·1 answer
  • Question 7 of 10 A permanent magnet picks up an iron nail, magnetizing the nail. How is this system different from an electromag
    8·1 answer
  • A simple harmonic transverse wave is propagating along a string towards the left direction as shown in the figure. figure shows
    10·1 answer
  • Under conditions of conservation of energy where the initial energy object is only gravitiational potential energy and the final
    9·1 answer
  • Mind being a helping hand? I know ABSOLUTELY nothing about air resistance.. It's still science for me so I guess I'll put it as
    8·1 answer
  • A charge is divided q1 and (q-q1)what will be the ratio of q/q1 so that force between the two parts placed at a given distance i
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!