Energy E of EM radiation is given by the equation E=hf, where h is Planck's constant and f is frequency. It means energy E and frequency f are proportional so as we increase the frequency, energy also increases. Also, the relationship between the wavelength and frequency is c=λ*f where λ is the wavelength and f is frequency and c is the speed of light. This tells us the wavelength and frequency are inversely proportional. So as we increase the frequency the wavelength is getting smaller. So as we go from left to right the frequency increases, energy also increases and the wavelength is decreasing. Or, on the left side we should have low frequency, low radiant energy, and long wavelength. On the right side we should have high frequency, high radiant energy and low wavelength. That is the third graph.
Use Factor-Label Method:
8miles 63360 inches
---------- X --------------------- X
1 1 mile
2.54cm 1 meter
X ------------ X ---------------- X
1 inch 100 cm
1 km
----------------- = 12.87 km
1000meters
8 miles = 12.87 km
Answer:
α(0) = 0 rad/s²
α(5) = 15 rad/s²
Explanation:
The angular velocity of the flywheel is given as follows:
w(t) = A + B t²
where, A and B are constants.
Now, for the angular acceleration, we must take derivative of angular velocity with respect to time:
Angular Acceleration = α (t) = dw/dt
α(t) = (d/dt)(A + B t²)
α(t) = 2 B t
where,
B = 1.5
<u>AT t = 0 s</u>
α(0) = 2(1.5)(0)
<u>α(0) = 0 rad/s²</u>
<u></u>
<u>AT t = 5 s</u>
α(5) = 2(1.5)(5)
<u>α(5) = 15 rad/s²</u>
Answer:
15
Explanation:
displacement = initial position - final position