Answer:
<h2>A.) 3 6/8</h2>
Step-by-step explanation:
<h2>follow me</h2>
please
Answer:
p = 0.07
p-hat = 0.035
p0 = 0.07
p-value = 0.003
Step-by-step explanation:
p = population parameter, in this case, the rate of infestations across all trees in the forest
p-hat = test statistic, in this case, the rate of infestations found in the sample of trees, i.e. those in Doug's backyard
p0 = the null hypothesis, in this case, the rate of infestations within the forest is correctly evaluated at 0.07 or 7%
p-value = the likelihood any difference between p and p-hat is down to chance
In this case 0.003 as the p-value means there is only 0.3% probability of our statistic value of 0.035 being down to variability and chance meaning it is 99.7% likely that there is some reason behind this difference;
We would accept the alternative hypothesis which says the current parameter value, 0.07, is in fact incorrect (either too high or too low, in this case, likely too high).
Answer:
Analysis of variance (ANOVA) is the most accurate to estimate the difference
Step-by-step explanation:
Analysis of variance (ANOVA) is the best statistical method that can be used to determine the systematic difference between the mean values of two given set of population in any random experiment
In this case the two set of populations would be the one in which temperature is measured by thermometers on ground and sensor mounted in a space satellite.
Its D because when you use some graph paper point A and point B are 6 units away from each other
Answer:
y>3
Step-by-step explanation:
9>-3y
3<y
y>3