<span>At 100 feet, the diver is under about 4 atmospheres pressure. If she is free diving, her lungs will be compressed to about 1/4 their size on the surface (with some movement of the major abdominal organs). If she is scuba diving, the air which she is breathing is also at 4 atmospheres and there is no problem. (The non-gas spaces in the body are not-compressible and are unaffected.) The only problems she has to concern herself with are the beginnings to nitrogen narcosis and the nitrogen which is dissolving (Henry's law) into her body tissues. On the way up, she also has to remember that the air in her lungs will expand by a factor of 4 and she better exhale! Hope this helps you</span>
Answer:
t? im pretty sure have a good day
Answer:
B. mass and height have the same effect on gravitational potential energy.
Explanation:
Both mass and height have the same effect on the gravitational potential energy of body.
Gravitational potential energy is the energy of a body due to that of another body. It usually the energy at rest in a body.
It is mathematically expressed as;
G.P.E = m x g x h
m is the mass
g is the acceleration due to gravity
h is the height
We see that both the height and mass are directly proportional to the gravitational potential energy and as such, they have the same effect.
Answer:
Uranium must be purified before it is used as a fuel source
Explanation:
The purer the uranium sample, the more the concentration of uranium in the fuel is.
Whenever uranium is extracted from nature, it contains a lot of impurities. Only a few special nuclear reactors can utilize uranium in this raw state. most of the others have to get uranium to become about 3% pure before they begin using it.
To do this, uranium has to be passed through a series of chemical reactions all with the aim of extracting the other compounds that may be present in the fuel.