<span> In order to create a complete full outer shell of electrons.
</span><span /><span>
</span>
<u>Answer:</u> The ion that is expected to have a larger radius than the corresponding atom is chlorine.
<u>Explanation:</u>
There are two types of ions:
- <u>Cations:</u> They are formed when an atom looses its valence electrons. They are positive ions.
- <u>Anions:</u> They are formed when an atom gain electrons in its outermost shell. They are negative ions.
For positive ions, the removal of electron increases the nuclear charge for an outermost electron because the outermost electrons are more strongly attracted by the nucleus. So, the effective nuclear charge increases for cations and thus, the size of the cation will be smaller than that of the corresponding atom.
For negative ions, the addition of electron decreases the nuclear charge for an outermost electron because the outermost electrons are less strongly attracted by the nucleus. So, the effective nuclear charge decreases for anions and thus, the size of the anion will be larger than that of the corresponding atom.
For the given options:
<u>Option a:</u> Chlorine
Chlorine gains 1 electron and form
ion
<u>Option b:</u> Sodium
Sodium looses 1 electron and form
ion
<u>Option c:</u> Copper
Copper looses 2 electrons and form
ion
<u>Option d:</u> Strontium
Strontium looses 2 electrons and form
ion
Hence, the ion that is expected to have a larger radius than the corresponding atom is chlorine.
Answer:
The pH is 7.54
Explanation:
The Henderson - Hasselbalch equation states that for a buffer solution which consists of a weak acid and its conjugate base, the buffer pH is given by:
pH ![=pk_{a} +log(\frac{[conjugate base]}{[weakacid]})](https://tex.z-dn.net/?f=%3Dpk_%7Ba%7D%20%2Blog%28%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bweakacid%5D%7D%29)
pkₐ is for the acid
In this case, the buffer hypochlorous acid HClO is a weak acid, and its conjugate base is the hypochlorite anion ClO⁻ is delivered to the solution via sodium hypochlorite NaClO
.
NaCIO = 0.200 M
HCIO = 0.200 M
pkₐ = -log₁₀ kₐ = -log₁₀ (2.9 × 10⁻⁸) = 7.54
∴pH =
= 7.54
The maximum amount of silver will be all of that contained in the solution.
Silver in solution:
Solution volume = 4,700 ml
Solution mass = 1.01 x 4,700
Solution mass = 5170 g
Amount of silver = 5,170 x 0.032
Amount of silver = 165.44 grams