Answer:
Explanation:
Use the trigonometric ratio definition of the tangent function and the quotient rule.
Quotient rule: the derivative of a quotient is:
- [the denominator × the derivative of the numerator less the numerator × the derivative of the denominator] / [denominator]²
- (f/g)' = [ g×f' - f×g'] / g²
So,
- tan(x)' = [ sin(x) / cos(x)]'
- [ sin(x) / cos(x)]' = [ cos(x) sin(x)' - sin(x) cos(x)' ] / [cos(x)]²
= [ cos(x)cos(x) + sin(x) sin(x) ] / [ cos(x)]²
= [ cos²(x) + sin²(x) ] / cos²(x)
= 1 / cos² (x)
= sec² (x)
The result is that the derivative of tan(x) is sec² (x)
This is the reaction formula,
4Fe+3O2=2Fe2O3
<span>3Fe+202=Fe3O4
it has o</span>xygen atom after it's rusted
B Very Acidic llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
Answer:
P2 = 19.2atm
Explanation:
Initial pressure (P1) = 16atm
Initial temperature (T1) = 340K
Final temperature (T2) = 408K
Final pressure (P2) = ?
This question involves the use of pressure law
Pressure law states that the pressure of a fixed mass of gas is directly proportional to it's temperature provided that volume is kept constant.
Mathematically,
P = kT, k = P / T
Therefore,
P1 / T1 = P2 / T2 = P3 / T3 = ......=Pn / Tn
P1 / T1 = P2 / T2
We need to solve for P2
P2 = (P1 × T2) / T1
Now we can plug in the values and solve for P2
P2 = (16 × 408) / 340
P2 = 6528 / 340
P2 = 19.2atm
The final pressure (P2) of the gas is 19.2atm