Answer:
The answer is
<h2>91.9 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of copper = 10.3 mL
density = 8.92 g/mL
The mass is
mass = 8.92 × 10.3 = 91.876
We have the final answer as
<h3>91.9 g</h3>
Hope this helps you
The complete balanced chemical reaction is written as:
AgNO3 + KCl ---> AgCl
+ KNO3
where AgCl is our
precipitate
So calculating for moles
of AgCl produced: MM AgCl = 143.5 g/mol
moles AgCl = 0.326 g /
(143.5 g/mol) = 2.27 x 10^-3 mol
we see that there is 1
mole of Ag per 1 mole of AgCl so:
moles Ag = 2.27 x 10^-3
mol
The molarity is simply
the ratio of number of moles over volume in Liters, therefore:
Molarity = 2.27 x 10^-3
mol / 0.0977 L
<span>Molarity = 0.0233 M</span>
When E° cell is an electrochemical cell which comprises of two half cells.
So,
when we have the balanced equation of this half cell :
Al3+(aq) + 3e- → Al(s) and E°1 = -1.66 V
and we have also this balanced equation of this half cell :
Ag+(aq) + e- → Ag(s) and E°2 = 0.8 V
so, we can get E° in Al(s) + 3Ag (aq) → Al3+(aq) + 3Ag(s)
when E° = E°2 - E°1
∴E° =0.8 - (-1.66)
= 2.46 V
∴ the correct answer is 2.46 V
Answer:
Atomic radius of sodium = 227 pm
Atomic radius of potassium = 280 pm
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
Consider the example of sodium and potassium.
Sodium is present above the potassium with in same group i.e, group one.
The atomic number of sodium is 11 and potassium 19.
So potassium will have larger atomic radius as compared to sodium.
Atomic radius of sodium = 227 pm
Atomic radius of potassium = 280 pm