Answer:
Can you teach me coeffeicients please honestly like you I need help on the
question to I don't blame you for having trouble on this questions
Step-by-step explanation: To solve this absolute value inequality,
our goal is to get the absolute value by itself on one side of the inequality.
So start by adding 2 to both sides and we have 4|x + 5| ≤ 12.
Now divide both sides by 3 and we have |x + 5| ≤ 3.
Now the the absolute value is isolated, we can split this up.
The first inequality will look exactly like the one
we have right now except for the absolute value.
For the second one, we flip the sign and change the 3 to a negative.
So we have x + 5 ≤ 3 or x + 5 ≥ -3.
Solving each inequality from here, we have x ≤ -2 or x ≥ -8.
Answer:
answer 60
Step-by-step explanation:
The LCM(12, 20) = 60.
Answer:
The zeros are x=0,x=8
Step-by-step explanation:
f(x)=x(x-8)
To find the zeros, we set the equation equal to zero
0 = x(x-8)
Using the zero product property
x= 0 x-8=0
x=0 x=8
The zeros are 0,8
Answer:
In First method : counting up, counting back on a number line,
If we want the quotient after dividing the number by 5 then we count how many 5 we get from 0 to the dividend.
For example : 
Since, from 0 to 30 there are six 5's obtained. ( because 5 × 6 = 30 )
Thus, 
In Second Method : dividing by 10, and then doubling the quotient.
First we divide the number by 10 then multiply the quotient by 2.
For Example: 
Since, 

Thus, 
Now, when we compare the above methods then we conclude that for the smaller numbers first method is appropriate because for small numbers we can easily count total 5's from 0. While for large numbers Second method is appropriate because it is hard to count the total 5's for the large number.