Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.
Answer:
Explanation:
Left block is on surface with higher inclination so it will go down . If T be tension
For motion of block A ,
net force = mgsin60 - (T + mg cos 60 x μ ) , μ is coefficient of friction .
ma = mgsin60 - T - mg cos 60 x .1
10a = 277.13 - T - 16
= 261.13 - T
T = 261.13 - 10a
For motion of block B
T - mg sin30 - mgcos30 x μ = ma
T- 160 - 27.71 = 10 a
261.13 - 10a - 160 - 27.71 = 10a
73.42 = 20a
a = 3.67 ft / s²
common acceleration = 3.67 ft / s²
The thickness of the ozone layer (for earth) and the atmosphere.
Mercury is the closest planet to the sun but it isn’t the hottest because it has no atmosphere. Although Venus is the second planet from the sun, it is the hottest because of it’s thick atmosphere and the clouds that trap heat in.