Answer:
16.89g of PbBr2
Explanation:
First, let us calculate the number of mole of Pb(NO3)2. This is illustrated below:
Molarity of Pb(NO3)2 = 0.595M
Volume = 77mL = 77/1000 = 0.077L
Mole =?
Molarity = mole/Volume
Mole = Molarity x Volume
Mole of Pb(NO3)2 = 0.595x0.077
Mole of Pb(NO3)2 = 0.046mol
Convert 0.046mol of Pb(NO3)2 to grams as shown below:
Molar Mass of Pb(NO3)2 =
207 + 2[ 14 + (16x3)]
= 207 + 2[14 + 48]
= 207 + 2[62] = 207 +124 = 331g/mol
Mass of Pb(NO3)2 = number of mole x molar Mass = 0.046 x 331 = 15.23g
Molar Mass of PbBr2 = 207 + (2x80) = 207 + 160 = 367g/mol
Equation for the reaction is given below:
Pb(NO3)2 + CuBr2 —> PbBr2 + Cu(NO3)2
From the equation above,
331g of Pb(NO3)2 precipitated 367g of PbBr2
Therefore, 15.23g of Pb(NO3)2 will precipitate = (15.23x367)/331 = 16.89g of PbBr2
The formula for molality---> m = moles solute/ Kg of solvent
the solute here is NH₃ because it's the one with less amount. which makes water the solvent.
1) let's convert the grams of NH₃ to moles using the molar mass
molar mass of NH₃= 14.0 + (3 x 1.01)= 17.03 g/ mol
15.0 g (1 mol/ 17.03 g)= 0.881 mol NH₃
2) let's convert the grams of water into kilograms (just divide by 1000)
250.0 g= 0.2500 kg
3) let's plug in the values into the molality formula
molality= mol/ Kg---> 0.881 mol/ 0.2500 kg= 3.52 m
Answer:
Hence the concentration of a MnO41- solution that has absorbance of 0.490 in the same cell at that wavelength is 0.3266.
Explanation:
Now A = el, el=const
Then,

Answer:
Liquid to Gas
Explanation:
The particles need energy to rise and over come the attractions between them as the liquid gets warmer more particles have sufficient, energy to escape from liquid. eventually even particles in the middle of the liquid form bubbles of gas in the liquid At this point the liquid is boiliing and turning into gas.