Answer:
it averages about 8AM to 11Am so 3 hours
Step-by-step explanation:
For this case we have the following expression:

We must evaluate the expression when:

Substituting the values we have:

Equal signs are added and the same signs are placed.

Different signs are subtracted and the sign of the major is placed:

Finally we have to:

Answer:
You can use the root test here. The series will converge if
![L=\displaystyle\lim_{n\to\infty}\sqrt[n]{\frac{(4-x)^n}{4^n+9^n}}](https://tex.z-dn.net/?f=L%3D%5Cdisplaystyle%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%5Bn%5D%7B%5Cfrac%7B%284-x%29%5En%7D%7B4%5En%2B9%5En%7D%7D%3C1)
You have
![L=\displaystyle\lim_{n\to\infty}\sqrt[n]{\frac{(4-x)^n}{4^n+9^n}}=|4-x|\lim_{n\to\infty}\frac1{\sqrt[n]{4^n+9^n}}](https://tex.z-dn.net/?f=L%3D%5Cdisplaystyle%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%5Bn%5D%7B%5Cfrac%7B%284-x%29%5En%7D%7B4%5En%2B9%5En%7D%7D%3D%7C4-x%7C%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac1%7B%5Csqrt%5Bn%5D%7B4%5En%2B9%5En%7D%7D)
Notice that
![\dfrac1{\sqrt[n]{4^n+9^n}}=\dfrac1{\sqrt[n]{9^n}\sqrt[n]{1+\left(\frac49\right)^n}}=\dfrac1{9\sqrt[n]{1+\left(\frac49\right)^n}}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%5Csqrt%5Bn%5D%7B4%5En%2B9%5En%7D%7D%3D%5Cdfrac1%7B%5Csqrt%5Bn%5D%7B9%5En%7D%5Csqrt%5Bn%5D%7B1%2B%5Cleft%28%5Cfrac49%5Cright%29%5En%7D%7D%3D%5Cdfrac1%7B9%5Csqrt%5Bn%5D%7B1%2B%5Cleft%28%5Cfrac49%5Cright%29%5En%7D%7D)
so as

, you have

, which means you end up with

This is the interval of convergence. The radius of convergence can be determined by finding the half-length of the interval, or by solving the inequality in terms of

so that

is the ROC. You get
Answer: 0.0668
Step-by-step explanation:
Given the following :
Mean (m) Cost = RS385
Standard deviation (s) = RS110
Assume a normal distribution, Probability that domestic airfare is RS550 or more?
P(x > 550)
Find the z - score
Z - score = (x - m) / s
Where x = 550
Z = (550 - 385) / 110
Z = 165 / 110 = 1.5
P(Z > 1.5) = 1 - P(Z ≤1.5)
Using the z table : 1.5 = 0.9332
Therefore,
1 - P(Z ≤1.5) = 1 - 0.9332 = 0.0668
P(x > 550) = 0.0668