Perpendicular lines<span> are two or more lines that intersect at a 90-degree angle, like the two lines drawn on this graph, and the x and y axes that orient them.</span>
<span> </span>
1/3 ln(<em>x</em>) + ln(2) - ln(3) = 3
Recall that
, so
ln(<em>x</em> ¹ʹ³) + ln(2) - ln(3) = 3
Condense the left side by using sum and difference properties of logarithms:


Then
ln(2/3 <em>x</em> ¹ʹ³) = 3
Take the exponential of both sides; that is, write both sides as powers of the constant <em>e</em>. (I'm using exp(<em>x</em>) = <em>e</em> ˣ so I can write it all in one line.)
exp(ln(2/3 <em>x</em> ¹ʹ³)) = exp(3)
Now exp(ln(<em>x</em>)) = <em>x </em>for all <em>x</em>, so this simplifies to
2/3 <em>x</em> ¹ʹ³ = exp(3)
Now solve for <em>x</em>. Multiply both sides by 3/2 :
3/2 × 2/3 <em>x</em> ¹ʹ³ = 3/2 exp(3)
<em>x</em> ¹ʹ³ = 3/2 exp(3)
Raise both sides to the power of 3:
(<em>x</em> ¹ʹ³)³ = (3/2 exp(3))³
<em>x</em> = 3³/2³ exp(3×3)
<em>x</em> = 27/8 exp(9)
which is the same as
<em>x</em> = 27/8 <em>e</em> ⁹
Statement 3: tri egc = tri egb
statement 4: tri ebc is equilateral.
reason 5: equilateral triangles have equal angles
Answer:
Correct answer is option D. 96.4 yd.
Step-by-step explanation:
Please refer to the attached figure for labeling of the given diagram.
ABC is a triangle with the following labeling:
A is the hole, B is the Tee and C is the point where the ball is.
Sides are labeled as:

To find:
Side 
Solution:
Here, we have one angle and two sides . Third side of the triangle is to be found opposite to the given angle.
We can use cosine formula here to find the value of the unknown side.

Putting all the values:

So, the distance between the Ball and hole is 96.42 yd
Correct answer is option D. 96.4 yd.