Answer:
The new velocity of the string is 100 centimeters per second (1 meter per second).
Explanation:
The speed of a wave through a string (
), in meters per second, is defined by the following formula:
(1)
Where:
- Tension, in newtons.
- Length of the string, in meters.
- Mass of the string, in kilograms.
The expression for initial and final speeds of the wave are:
Initial speed
(2)
Final speed

(3)
By (2), we conclude that:
If we know that
, then the new speed of the wave in the string is
.
Answer:
0.6944 m/sec^2
Explanation:
The computation of the average acceleration is given below:
a = v - u ÷ t
where
a denotes average acceleration
v denotes final velocity
u denotes initial velocity
t denotes time
So, the average acceleration is
= (25 - 0) ÷ 10
= 0.6944 m/sec^2
Answer:
Carla
Explination: As Daniel's ball is dropped from the car moving at 40 mph in a horizontal direction, at the time the ball is dropped it is also moving at 40 mph in a horizontal direction due to inertia, a property of mass causing resistance to change, Daniel's ball will continue to move in a horizontal direction even after being dropped along with falling due to gravity. Daniel's ball will then fall in a projectile motion curve of sorts which will cause an overall velocity to not be straight down causing it not to fall to the ground as quickly as Carla's ball.
Sorry for the long explanation
Answer:
Using the range formula R = v^2 sin 2 theta / g
or v^2 = R * g / sin 86.4
v^2 = 3.14 m * 9.81 m/s2 / .998
v^2 = 30.9 m^2 / s^2
v = 5.56 m/s
This hasn't really proved the question - this would give
vy = 5.56 * sin 43.2 = 3.81 m/s
vx = 5.56 * cos 43.2. = 4.05 m/s
t = 1.57 / 4.05 = .387 sec to reach the waterfall
h = 3.81 * .387 - 4.9 (.387)^2 = .74 m well above the height of the falls
There seems another way to do this
vy / vx = tan 43.2 vy = .939 vx
h = vy t - 1/2 g t^2 and t = 1.57 / vx
h = 1.57 tan 43.2 - 4.9 (1.57 / vx)^2
Solving for vx I get vx = 3.26 m/s vy = 3.06 m/s v = 4.47 m/s
Answer: hello some of your values are wrongly written hence I will resolve your question using the right values
answer:
stiffness = 1.09 * 10^-6 N/m
Explanation:
Given data:
Length ( l ) = 16 m
radius of wire ( r ) = 3.5 m
mass ( m ) = 5kg
<u>Distance stretched ( Δl ) = 4 * 10^-3 m </u> ( right value )
<u>average bond length ( between atoms ) = 2.3 * 10^-10 m </u>( right value)
first step : calculate the area
area ( A ) = πr^2 = π * ( 3.5)^2 = 38.48 m^2
γ = MgL / A Δl
= [ (5 * 9.81 * 16 ) / ( 38.48 * (4.3*10^-3) ) ]
= 784.8 / 0.165 = 4756.36 N/m^2
hence : stiffness = γ * bond length
= 4756.36 * 2.3 * 10^-10 = 1.09 * 10^-6 N/m