<span>I would say greater than because as you do deeper, the pressure strengthens. If you were in a 10 ft deep pool and you dive all the way to the bottom, the ears usually pop. That's because of the pressure. Whereas if you were to go five feet, your ears wouldn't. It depends on the age of the person.
Hope this helps.</span>
Answer: <u><em>C. Steel</em></u>
Explanation: <em><u>When a sound wave travels through a solid body consisting</u></em>
<em><u /></em>
<em><u>of an elastic material, the velocity of the wave is relatively</u></em>
<em><u /></em>
<em><u>high. For instance, the velocity of a sound wave traveling</u></em>
<em><u /></em>
<em><u>through steel (which is almost perfectly elastic) is about</u></em>
<em><u /></em>
<em><u>5,060 meters per second. On the other hand, the velocity</u></em>
<em><u /></em>
<em><u>of a sound wave traveling through an inelastic solid is</u></em>
<em><u /></em>
<em><u>relatively low. So, for example, the velocity of a sound wave</u></em>
<em><u /></em>
<em><u>traveling through lead (which is inelastic) is approximately</u></em>
<em><u /></em>
<em><u>1,402 meters per second.</u></em>
<em><u /></em>
<u><em /></u>
–0.05 m/s
Explanation:
The total momentum of the system player+basketball must be conserved before and after the ball has been thrown.
Before throwing the ball, the total momentum of the system is zero, because can assume both the player and the basketball being at rest:

The total momentum after the ball has been thrown is instead the sum of the momenta of the the player and of the basketball:

where
is the player's mass
is the player's velocity
is the ball's mass
is the ball's velocity
For the conservation of momentum, we have



And the negative sign means that the player travels in the opposite direction to the ball.
Answer:
the force needed to give the truck the acceleration is 29,760 N.
Explanation:
Given;
mass of truck, m = 4800 kg
acceleration of the truck, a = 6.2 m/s²
The force needed to give the truck the acceleration is calculated as;
F = ma
F = 4800 x 6.2
F = 29,760 N
Therefore, the force needed to give the truck the acceleration is 29,760 N.
Use the largest force for as long a time as possible Ft=mV.
Hope this help