Velocity and acceleration are vector quantities whereas speed, temperature and age are not.
<h3>What is a vector quantity?</h3>
Vector is a quantity that has both magnitude and direction and is represented by an arrow whose direction is same as that of the quantity and length is proportional to the quantity's magnitude.
Vector has magnitude and direction but it does not have position. Velocity and acceleration both are vector quantities as they have magnitude and direction.
If the speed of an object remains same but direction changes then the object is accelerating. It is important to remember that acceleration and velocity aren't always in the same direction.
To know more about vector quantity, refer
brainly.com/question/626479
#SPJ1
Answer:
Mutual inductance will be 
Explanation:
We have given induced current 
Time is given as 
We have to find the mutual inductance between the coils
Induced emf is given as e = 9 volt
We know that induced emf is given by


Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
Ball 4 because the higher the elevation is the greater the potential energy it has