The water molecules are not completely removed so additional heating is required.
Explanation:
We have the copper (II) sulfate pentehydrate with the chemical formula CuSO₄ · 5H₂O.
molar mass of CuSO₄ · 5H₂O = 159.6 + 5 × 18 = 249.6 g/mole
Knowing this, we devise the following reasoning:
if in 249.6 g of CuSO₄ · 5H₂O there are 90 g of H₂O
then in 8 g of CuSO₄ · 5H₂O there are Y g of H₂O
Y = (8 × 90) / 249.6 = 2.88 g of water
mass of dried CuSO₄ = mass of CuSO₄ · 5H₂O - mass of H₂O
mass of dried CuSO₄ = 8 - 2.88 = 5.12 g
5.12 g is less that the weighted mass of 6.50 g. We deduce from this that the sample needs additional heating in order to remove all the water (H₂O) molecules.
Learn more about:
hydrates
brainly.com/question/10232217
brainly.com/question/13450632
#learnwithBrainly
Ag - 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d⁹
Answer:
Heat is the total energy of molecular motion in a substance while temperature is a measure of the average energy of molecular motion in a substance. Heat energy depends on the speed of the particles, the number of particles (the size or mass), and the type of particles in an object.
Explanation: