So, the definite integral 
Given that
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
,
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932
Answer:
You are correct
Step-by-step explanation:
Start with 1 1/2. This can be made into an improper fraction which is 3/2
Now multiply both top and bottom of 3/2 by 5
(3*5)/(2 * 5) = 15 / 10
16/10 is just slightly bigger than 15/10
Answer:
Commutative property
Step-by-step explanation:
Hope that helps!
x = 4 and EF = 4 ⇒ 3rd answer
Step-by-step explanation:
If two triangles are congruent, then
1. Their corresponding sides are equal
2. Their corresponding angles are equal
3. Their areas and perimeters are equal
∵ △ ABC ≅ △ DEF
∴ AB ≅ DE
∴ BC ≅ EF
∴ AC ≅ DF
∵ BC = 4 x - 12
∵ EF = -3 x + 16
∵ BC = EF
∴ 4 x - 12 = -3 x + 16
Let us solve the equation to find x
∵ 4 x - 12 = -3 x + 16
- Add 3 x for both sides
∴ 7 x - 12 = 16
- Add 12 to both sides
∴ 7 x = 28
- Divide both sides by 7
∴ x = 4
Substitute the value of x in the expression of EF
∵ EF = -3 x + 16
∵ x = 4
∴ EF = -3(4) + 16 = -12 + 16
∴ EF = 4
x = 4 and EF = 4
Learn more:
You can learn more about congruence of Δs in brainly.com/question/3202836
#LearnwithBrainly