Answer:
D. When the temperature of the gas is the same throughout
Explanation:
By Newton's second law, the net force on the object is
∑ <em>F</em> = <em>T</em> - <em>mg</em> = - <em>ma</em>
where
• <em>T</em> = 25 N, the tension in the string
• <em>m</em> is the mass of the object
• <em>g</em> = 9.8 m/s², the acceleration due to gravity
• <em>a</em> = 2.0 m/s², the acceleration of the elevator-object system
Solve for <em>m</em> :
25 N - <em>m</em> (9.8 m/s²) = - <em>m</em> (2.0 m/s²)
==> <em>m</em> = (25 N) / (9.8 m/s² - 2.0 m/s²) ≈ 3.2 kg
Answer:
A. the magnitude of the force between the spheres is 3.97 x 10⁻⁴ N
B. the magnitude of its initial acceleration is 5.83 m/s²
Explanation:
given information:
metal sphere's mass, m = 0.1 g = 1 x 10⁻⁴ kg
charge, q = -21 nC = -2.1 x 10⁻⁸
r = 10 cm = 0.1 m
What is the magnitude of the force between the spheres?
F₁₂ = k q₁q₂/r²
= ( 9 x 10⁹) (-2.1 x 10⁻⁸)²/(0.1)²
= 3.97 x 10⁻⁴ N
If the upper sphere is released, it will begin to fall. What is the magnitude of its initial acceleration?
mg - F₁₂ = ma
a = g - (F₁₂/m)
= 9.8 - (3.97 x 10⁻⁴/1 x 10⁻⁴)
= 5.83 m/s²
The work that Sam should do in order to stop is the boat is the same as that of the kinetic energy of the object in order to counter its motion. Kinetic energy is calculated through the equation,
KE = 0.5mv²
where KE is kinetic energy, m is mass, and v is the velocity.
Substituting,
KE = 0.5(1200kg)(1.2 m/s)²
<em>KE = 864 J</em>
Answer:
Since the illuminated side of the moon appears to be getting smaller in size (after the full moon), the moon is said to be in the "erosion phase". For the next 7 days, the moon will remain in an “eroded gibbous stage”.
Explanation: