The total potential energy associated with the jumper at the end of his fall is 90,000 J.
The given parameters;
- <em>mass of the jumper, m = 51 kg</em>
- <em>height of the bridge. h = 321 m</em>
- <em>spring constant of the cord, k = 32 N/m</em>
- <em>extension of the cord, x = 179 m - 104 m = 75 m</em>
The total potential energy associated with the jumper at the end of his fall is calculated as follows;
U = ¹/₂kx² + mgΔh
where;
<em>Δh is the change in height after falling </em>
U = ¹/₂(32)(75)² + (51)(9.8)(0)
U = 90,000 J
Thus, the total potential energy associated with the jumper at the end of his fall is 90,000 J.
Learn more here:brainly.com/question/15731149
Answer:
Airplane cabins are pressurized because as the airplane climbs higher in altitude, the air becomes very thin, this pressurization ensures that there is still enough breathable oxygen in the cabin to prevent everyone from suffering the effects of hypoxia and passing out.
plz give brainlist :'D
Answer:

Explanation:
By ideal gas equation law we know that
PV = nRT
now we know that when balloon rises to certain level then the number of moles will remains same
so we can say


now plug in all data to find the final volume of the balloon



Answer:
False
Explanation:
This is due to the gravitational pull, since the moon does not have the same force or gravity like Earth, your weight would change.
☆anvipatel77☆
•Expert•
Brainly Community Contributor
Given:
Total distance = 1000 kilometer
Total time = 5 hours
To find:
Average speed = ?
Formula used:
= 
Where
= average speed
s = total distance
t = total time
Solution:
Average speed of the jet is given by,
= 
Where
= average speed
s = total distance
t = total time
= 
= 200 km/ h
Thus, average speed of the jet is 200 km/h.
Hence, Option (A) is correct.