The order of the positive and negative feedback loops are positive, positive, negative, positive, positive, negative.
<h3>
What is a feedback loop?</h3>
A system component known as a feedback loop is one in which all or a portion of the output is used as input for subsequent actions. A minimum of four phases comprise each feedback loop. Input is produced in the initial phase. Input is recorded and stored in the subsequent stage. Input is examined in the third stage, and during the fourth, decisions are made using the knowledge from the examination.
Both negative and positive feedback loops are possible. Insofar as they stay within predetermined bounds, negative feedback loops are self-regulating and helpful for sustaining an ideal condition. One of the most well-known examples of a self-regulating negative feedback loop is an old-fashioned home thermostat that turns on or off a furnace using bang-bang control.
To learn more about feedback loop, visit:
brainly.com/question/11312580
#SPJ4
Answer:
Explanation:
Given

Frictional Force is balanced by force due to car acceleration
Frictional force 




Answer:
83,900 J
Explanation:
First, find the acceleration:
F = ma
1150 N = (1600 kg) a
a = 0.719 m/s²
Now find the final velocity.
Given:
Δx = 45.8 m
v₀ = 6.25 m/s
a = 0.719 m/s²
Find: v
v² = v₀² + 2aΔx
v² = (6.25 m/s)² + 2 (0.719 m/s²) (45.8 m)
v = 10.2 m/s
Now find the final KE:
KE = ½ mv²
KE = ½ (1600 kg) (10.2 m/s)²
KE = 83,920 J
Rounded to three significant figures, the final kinetic energy is 83,900 J.
Answer:
0.68 m
Explanation:
We know that the speed of sound in air is a product of frequency and wavelength. Taking speed of sound in air as 340 m/s
V=frequency*wavelength
Then wavelength is given by 350/500=0.68 m
Therefore, to repeat constructive interference at the listener's ear, a distance of 0.68 m is needed
Answer:
Time will be 19 ms so option (a) is correct option
Explanation:
We have given that mass of wire m = 50 gram = 0.5 kg
Frequency f = 810 Hz
Wavelength = 0.4 m
Velocity is given by

Amplitude is given as d = 6 m
So time 
So option (a) is correct option