KE = 1/2mv^2
1/2(10.5)(9)^2
1/2(10.5)(81) = 425.25 J
Given parameters:
Mass of the body = 200g
Force on the body = 10N
Unknown parameters:
Acceleration produced by the force = ?
To solve this problem we must first define force in terms of mass and acceleration. This is possible due to the Newton's first law of motion.
Force = mass x acceleration
Here the unknown is acceleration and we can easily solve for it.
But we must take the mass to kilogram in order for it to cancel out.
1000g = 1 kg
200g = x kg =
= 0.2kg
Now input the parameters and solve;
10 = 0.2 x acceleration
Acceleration =
= 50m/s²
The acceleration produced by the body is 50m/s²
Ok I know this from other stuff potassium nitrate would completely dissolve in a 100 g on was at 30 c would be 60 but this is 40 so I’m not really sure and I don’t what to ok give you a bad grade but if I had to guess I would go with 65 grams
Answer:
A- 20 protons and 20 electrons
Explanation:
Answer:
the maximum frequency observed is 2.0044 10⁶ Hz
Explanation:
This is a Doppler effect exercise. Where the emitter is still and the receiver is mobile, therefore the expression that describes the process is
f ’=
the + sign is used when the observer approaches the source
typical speeds of a baby's heart stop are around 200 m / min
let's reduce to SI units
v₀ = 200 m / min (1 min / 60 s) = 3.33 m / s
let's calculate
f ’= 2 10⁶ (
)
f ’= 2.0044 10⁶ Hz
f ’= 1,9956 10⁶ Hz
therefore the maximum frequency observed is 2.0044 10⁶ Hz