Answer:
No
Explanation:
An intermetiate in a chemical reaction is something that is formed and reused in a reaction.
The method that can be used to separate the mixture is chromatography.
<h3>
What is chromatography?</h3>
"Chromatography" is obtained form a Greek word which literarily means, color writing. It is a method of separation which is common in separating a mixture of pigments.
To obtain the colors used, two solvents are mixed and the sample ink is dissolved in the solvents then spotted on a thin layer and put into a TLC chamber then the chromatogram is allowed to develop.
The various components of the pigment will appear on the chromatogram and can be identified using spectrophotometry. The Rf values of each component can also be used to identify it.'
Learn more about chromatography: brainly.com/question/26491567
Answer:
1) non equilibrium
mass movement
unsaturated solution
2)equilibrium phase change
Heat of vaporization
condensation
heat of fusion
normal boiling point
vapor pressure
3) equilibrium reaction
saturated solution
Ksp
solubility
Ka
Explanation:
Nonequilibrium processes are those processes that are irreversible. They often lead to an increase in entropy of the system.
In chemical systems, a state of equilibrium is said to have been attained when the rate of the forward process equals the rate of the reverse process. This is true for both chemical reaction and phase changes. A state of equilibrium connotes a constancy in physical properties of a system over a period of time.
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L