Answer: 1560632 joules
Explanation:
The change in thermal energy (Q) required to heat ice depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = ?
Mass of frozen water (ice) = 1kg
C = 4184 J/(kg K)
Φ = (Final temperature - Initial temperature)
= 100°C - 0°C = 100°C
Convert 100°C to Kelvin
(100°C + 273) = 373K
Then, Q = MCΦ
Q = 1kg x 4184 J/(kg K) x 373K
Q = 1560632 joules
Thus, the change in thermal energy is 1560632 joules
Answer:
a. A beta particle has a negative charge. d. A beta particle is a high-energy electron.
Explanation:
Identify the correct descriptions of beta particles.
a. A beta particle has a negative charge. YES. A beta particle is originated in the following nuclear reaction: ¹₀n ⇒ ¹₁H + ⁰₋₁e (beta particle.)
b. A beta particle contains neutrons. NO. It is a electron originated in the nucleus.
c. A beta particle is less massive than a gamma ray. NO. Gamma rays don't have mass while a beta particle has a mass which is half of one thousandth of the mass of a proton.
d. A beta particle is a high-energy electron. YES. Beta particles are nuclear originated hig-energy electrons.
Answer:
+1
Explanation:
For the equation to be balanced, the total mass number and the total atomic number on both side of the equation but be equal.
This is illustrated:
For the mass number:
Left side: 22
Right side: 22 + 0 = 22
For the atomic number:
Left side: 11
Right side: 10 + x
11 = 10 + x
Collect like terms
x = 11 - 10
x = 1
See attachment for further explanation.
Answer:
co2
Explanation:
because carbon is a gas product
Answer:
The noble gases with complete outermost shell electrons.
Explanation:
Noble gases or inert gases do not react chemically with other elements because they have a complete configuration of their electronic shells. What drives chemical reaction is simply the exchange of electrons between two or more atoms. It can be a loss, a gain or simple sharing of electrons in order to achieve a complete configuration just like those of noble gases.