√144 = √12^2 = 12
=========================
-5y-6y is -11y=-22 so y=2
200 divided by 10 is 20 so You have to X both by 20 so 9 X 20 is 180 and 10 X 20 is 200 I think
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
y = 7x - 4x²
<span>7x - 4x² = 0 </span>
<span>x(7 - 4x) = 0 </span>
<span>x = 0, 7/4 </span>
<span>Find the area of the bounded region... </span>
<span>A = ∫ 7x - 4x² dx |(0 to 7/4) </span>
<span>A = 7/2 x² - 4/3 x³ |(0 to 7/4) </span>
<span>A = 7/2(7/4)² - 4/3(7/4)³ - 0 = 3.573 </span>
<span>Half of this area is 1.786, now set up an integral that is equal to this area but bounded by the parabola and the line going through the origin... </span>
<span>y = mx + c </span>
<span>c = 0 since it goes through the origin </span>
<span>The point where the line intersects the parabola we shall call (a, b) </span>
<span>y = mx ===> b = m(a) </span>
<span>Slope = m = b/a </span>
<span>Now we need to integrate from 0 to a to find the area bounded by the parabola and the line... </span>
<span>1.786 = ∫ 7x - 4x² - (b/a)x dx |(0 to a) </span>
<span>1.786 = (7/2)x² - (4/3)x³ - (b/2a)x² |(0 to a) </span>
<span>1.786 = (7/2)a² - (4/3)a³ - (b/2a)a² - 0 </span>
<span>1.786 = (7/2)a² - (4/3)a³ - b(a/2) </span>
<span>Remember that (a, b) is also a point on the parabola so y = 7x - 4x² ==> b = 7a - 4a² </span>
<span>Substitute... </span>
<span>1.786 = (7/2)a² - (4/3)a³ - (7a - 4a²)(a/2) </span>
<span>1.786 = (7/2)a² - (4/3)a³ - (7/2)a² + 2a³ </span>
<span>(2/3)a³ = 1.786 </span>
<span>a = ∛[(3/2)(1.786)] </span>
<span>a = 1.39 </span>
<span>b = 7(1.39) - 4(1.39)² = 2.00 </span>
<span>Slope = m = b/a = 2.00 / 1.39 = 1.44</span>
The ball describes a parabola, as you can see in the attached picture. So, the point where the ball strike the ground is the point where the parabola meets the x axis. In fact, the x-axis is the set of points where y=0, which means that the ball has height 0 or -again- it hits the ground.
So, we have to set y=0 in our equation and look for the positive solution. We have
And the positive solution is
So that's the distance from the child where the ball strikes the ground.