<span>Because aluminium oxide is strong and forms a coating over itself, but iron oxide (rust) will flake away.</span>
3rd option please and good luck hope you pass...........
Answer:
A. The partial pressure for CH4 = 0.0925atm
B. The partial pressure for C2H6 = 0.925atm
C. The partial pressure for C3H8 = 0.346atm
D. The partial pressure for C4H10 = 0.115atm
Explanation:
Total pressure = 1.48atm
Total mole = 0.4+4+1.5+0.5=6.4
A. Mole fraction of CH4 = 0.4/6.4 = 0.0625
The partial pressure for CH4 = 0.0625 x 1.48 = 0.0925atm
B. Mole fraction of C2H6 = 4/6.4 = 0.625
The partial pressure for C2H6 = 0.625 x 1.48 = 0.925atm
C. Mole fraction of C3H8 = 1.5/6.4 = 0.234
The partial pressure for C3H8 = 0.234 x 1.48 = 0.346atm
D. Mole fraction of C4H10 = 0.5/6.4 = 0.078
The partial pressure for C4H10 = 0.078 x 1.48 = 0.115atm
Answer: Conduction
Explanation:
Because the ice cube is touching the surrounding soup, the energy is going from the hot soup into the ice cube. You can rule out radiation and convection because radiation includes rays (which aren't a part of this question) and convection is usually seen in objects/fluids that are not touching (and the ice cube and the soup ARE touching).
Answer: 48,501 J/mol
Explanation:
1) Action barrier = activation energy = Ea
2) Data:
i) T₁ = 12°C = 12 + 273.15 K = 285.15K
ii) T₂ = 22°C = 22 + 273.15 K = 295.15 K
iii) rate constant = k: k₂ / k₁ = 2
iv) Ea = ?
3) Formula:
Arrhenius' law gives the relationship between the constant of reaction and the temperature:

4) Solution
By arranging the formula, you get:
㏑[k₂/k₁] =Ea/R [1/T₁ - 1/T₂]
Replace k₂ = 2k₁; T₁ = 285.15; and T₂ = 295.15
ln[2] = Ea/8.314 J/K mol × [1/285.15 - 1/295.15]K
Ea = ln [2] × 8.314 J/K mol / [1.18818×10⁻⁴K] = 48,501 J/mol