57.0 is it rounded to three sig figs. You count three spaces then round from there, which would be the zero and you would round down because the four is there.
Probably, above 100 Degree Celsius.
Answer:
Kc = 0.20
Explanation:
N₂O₄ ⇄ 2NO₂
moles 5.3mol 2.3mol
Vol 5L 5L
Molarity 5.3/5M 2.3/5M
= 1.06M = 0.46M
Kc = [NO₂]²/[N₂O₄] = (0.46)²/(1.06) = 0.1996 ≅ 0.20
<h3>
<u>Answer;</u></h3>
= 930.23 mL
<h3><u>Explanation</u>;</h3>
Using the combined gas law;
P1V1/T1 = P2V2/T2
Where; P1 = 600 kPa, V1 = 800 mL, and T1 = -25 +273 = 258 K, and
V2= ?, P2 = 1000 kPa, and T2 = 227 +273 = 500 K
Thus;
V2 = P1V1T2/T1P2
= (600 ×800 ×500) / (258 × 1000)
= 930.23 mL
Answer:
a. Remaining at rest requires the use of ATP.
Explanation:
The resting membrane potential is maintained by the sodium-potassium pump. The sodium potassium pump does this by actively pumping sodium ions out of the cell and potassium ions inside the cell in a ratio of 3:2. This movement of ions by the sodium-potassium pump is against their concentration gradient. In a neuron at rest, there are more sodium ions outside the cell than there are inside the cell. Also, there are are more potassium ions inside the cell than there are outside the cell. However, there are ion channels through which these ions enter and leave the cell. Sodium ion channels allow sodium to enter the cell following its concentration gradient, whereas, potassium ion channels allow potassium to leave the cell following its concentration gradient. However, more potassium ions leave the cell than do sodium ions enter the cell because of the higher permeability of the cell to potassium ions.
In order to maintain the resting membrane potential, the sodium potassium pump powered by the hydrolysis of an ATP molecules pumps sodium ions out of the cell and potassium ions into the cell.
<em>Therefore, the correct option is A, as ATP is needed by the sodium-potassium pump in order to maintain the resting membrane potential.</em>