Answer and Explanation:
The reaction is in the gas phase, so the equilibrium constant is expressed in terms of the partial pressures (P) of the products and reactants, as follows:

We have the following data:
P(SO₃) = 2.6 atm
P(O₂) = 0.43 atm
We need Kp for this reaction. We can assume that in Appendix 4 we found that Kp = 7 x 10²⁴.
Then, we introduce the data in the equilibrium constant expression to calculate the partial pressure f SO₂ (PSO₂), as follows:

Therefore, the partial pressure of SO₂ is 1.5 x 10⁻¹² atm (for the given Kp).
Answer:
Which group in the Periodic Table contains elements that form ions which are larger than their atoms?
The second.. . Luckily for you, I just happen to have a chart in my room.
The moles of oxygen required to burn Butane is 6 moles.
<h3>What is a Combustion Reaction?</h3>
A reaction in which fuel gets oxidised by an oxidising agent producing a large amount of heat is called a combustion reaction.
In this question
Butane is burnt with oxygen
Molar mass of C₄H₁₀ = (12.0×4 + 1.0×10) g/mol = 58.0 g/mol
Molar mass of O₂ = 16.0×2 g/mol = 32.0 g/mol
Balanced equation for the reaction:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Mole ratio C₄H₁₀ : O₂ = 2 : 13
The given mass = 54grams
moles = 54/58 = 0.93 moles
The mole of oxygen required =
0.93/ x = 2/13
0.93*13/2 = x
x = 6.045 moles
Therefore 6 moles of oxygen are required to burn Butane.
To know more about Combustion Reaction
brainly.com/question/12172040
#SPJ1
Answer:
The answer is A. Polar covalent; negatively
Explanation:
Hydrogen bonds form between molecules containing polar covalent bond the hydrogen bond is been a hydrogen atom of one molecule and a partially negative charged atom of another.
Example
(water):- It contain a slight positive charge on one side and a slight negative charge on the other.
Answer:
1.48 × 10²⁴ atoms
Explanation:
Step 1: Calculate the moles of argon
Argon is a noble gas, whose molar mass is 39.95 g/mol. We will use this data to find the moles corresponding to 98.1 grams of argon.

Step 2: Calculate the atoms of argon
In order to calculate the number of atoms of argon in 2.46 moles of argon, we have to consider the Avogadro's number: there are 6.02 × 10²³ atoms of Ar in 1 mole of Ar.
