The answer would be B the transfer of electrons from one atom to another
Answer:
See explanation and image attached
Explanation:
Aromatic hydrocarbons undergo electrophillic substitution. Usually, substituted benzene is more or less reactive to electrophillic substitution compared to unsubstituted benzene.
Substituents on the benzene ring tend to direct the incoming electrophile during electrophillic substititution. The presence of the -CH3 group on toluene directs the incoming Br electrophile to the ortho/para position.
Where the incoming electrphile E is Bromine, we can see that in the ortho/ para product, the electron pushing -CH3 stabilizes the resonance structure formed and increases electron density at the ortho/para position via resonance compared to the meta product as we can see from the image attached. Hence, the ortho and para products predominate over meta products.
Image credit: Chemistry steps
Answer:
The answer to your question is 2.32 atm
Explanation:
Data
P = ?
n = 0.214
V = 2.53 L
T = 61°C
R = 0.082 atm L/mol°K
Formula
PV = nTR
solve for P
P = nRT/V
Process
1.- Calculate the temperature in K
°K = °C + 273
°K = 61 + 273
= 334
2.- Substitution
P = (0.214 x 0.082 x 334) / 2.53
3.- Simplification
P = 5.86/2.53
4.- Result
P = 2.32 atm
The reaction is an equilibrium represented by the equation
<span>Ag2CO3(s) + 2 HNO3(aq) <----> 2 AgNO3(aq) + H2O(l) + CO2(g) </span>
From the <span>Le Chatelier's Principle which </span>states that changing a factor such as concentration, temperature, or pressure of a reaction at equilibrium will cause the reaction to shift in the direction that counteracts the effect of that change.
Therefore; the CO2 produced starts escaping and the concentration and pressure of CO2 drops. The system responds by trying to increase the concentration and pressure of CO2 by producing more. This means more and more Ag2CO3 will dissolve due to reaction with the acid, HNO3.
This continues until one of the reactants is exhausted.