Explanation:
Hope this helps,
Juno entered a polar orbit of Jupiter on July 5th 2016 UTC, to begin a scientific investigation of the planet. After completing its mission, Juno will be intentionally deorbited into Jupiters atmosphere. Junos mission is to measure Jupiters composition, gravitational field, magnetic field, and polar magnetosphere.
<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
Answer:
Temperature
Explanation:
Heat only flows from one point to the other due to the difference in temperature.
Answer:
the money that would be saved is $13.14.
Explanation:
Given;
power consumed by the light bulb, P = 100 W = 0.1 kW
time of running the bulb, t = 3 hours for 365 days = 1,095 hours
cost rate of power consumption, C = $0.12 per kWh
Energy consumed by the light bulb for the given days;
E = Pt
E = 0.1 kW x 1,095 hr
E = 109.5 kWh
Cost of energy consumed = 109.5 kWh x $0.12 / kWh
= $13.14
Therefore, the money that would be saved is $13.14.
Answer:
Radiation
Explanation:
The sun energy reaches us by Radiation.