1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sindrei [870]
2 years ago
6

A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio

n just as it leaves the ground? b.At what angle does it leave the ground?

Physics
1 answer:
Arisa [49]2 years ago
6 0

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

You might be interested in
I forgot to write also put drawings on my theory questions
11Alexandr11 [23.1K]
Hi love hope you had an amazing day! you’re beautiful!!
8 0
3 years ago
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of t
Maslowich

Answer:

a) The time taken to travel from 0.18 m to -0.18m when the amplitude is doubled = 2.76 s

b) The time taken to travel from 0.09 m to -0.09 m when the amplitude is doubled = 0.92 s

Explanation:

a) The period of a simple harmonic motion is given as T = (1/f) = (2π/w)

It is evident that the period doesn't depend on amplitude, that is, it is independent of amplitude.

Hence, the time it would take the block to move from its amplitude point to the negative of the amplitude point (0.09 m to -0.09 m) in the first case will be the same time it will take the block to move from its amplitude point to negative of the amplitude point in the second case (0.18 m to -0.18 m).

Hence, time taken to travel from 0.18 m to -0.18m when the amplitude is doubled is 2.76 s

b) Now that the amplitude has been doubled, the time taken to move from amplitude point to the negative amplitude point in simple harmonic motion, just like with waves, is exactly half of the time period.

The time period is defined as the time taken to complete a whole cycle and a while cycle involves movement from the amplitude to point to the negative amplitude point then fully back to the amplitude point. Hence,

0.5T = 2.76 s

T = 2 × 2.76 = 5.52 s

Note that the displacement of a body undergoing simple harmonic motion from the equilibrium position is given as

y = A cos wt (provided that there's no phase difference, that is, Φ = 0)

A = amplitude = 0.18 m

w = (2π/5.52) = 1.138 rad/s

When y = 0.09 m, the time = t₁₂ = ?

0.09 = 0.18 Cos 1.138t₁ (angles in radians)

Cos 1.138t₁ = 0.5

1.138t₁ = arccos (0.5) = (π/3)

t₁ = π/(3×1.138) = 0.92 s

When y = -0.09 m, the time = t₂ = ?

-0.09 = 0.18 Cos 1.138t₂ (angles in radians)

Cos 1.138t₂ = -0.5

1.138t₂ = arccos (-0.5) = (2π/3)

t₂ = 2π/(3×1.138) = 1.84 s

Time taken to move from y = 0.09 m to y = -0.09 m is then t = t₂ - t₁ = 1.84 - 0.92 = 0.92 s

Hope this Helps!!!

3 0
2 years ago
Where do you see triangulation used on this structure? Explain how triangulation​
Olegator [25]
I like your profile picture:)
3 0
3 years ago
O que é cena fone de luz na visão da fisica
yulyashka [42]
Me don’t speak spanish
4 0
3 years ago
75 POINTS!!!!! Please help me! I need the correct answer! This is my second time posting this cause no one answered.
son4ous [18]
According to the article "Nuclear shapes" by Renee Lucas the nucleus's shape is mainly modified by vibrational and rotational features happening within the cell. According to the article if i read correctly "near closed shells spherical shapes prevail, while between closed shells the large number of valence nucleons in orbit with large particle angular momentum leads to nuclei with large deformations leading them to not only maintain its shape but also alloying it to work.
6 0
2 years ago
Read 2 more answers
Other questions:
  • How does the theory of natural selection explain the diversity of life?
    10·1 answer
  • A/an ___ is a machine which tells us about the strength and speed of sisemec waves.
    12·2 answers
  • A man pushes a heavy cart with a force exerted of 250 Newtons to keep it moving at a constant velocity. What is the kinetic fric
    14·1 answer
  • The acceleration due to gravity on Earth is 9.80 m/s 2 . An African elephant can have a mass up to 6,050 kg. What is its weight
    14·2 answers
  • Imagine that a star-forming cloud collapses but retains all of its mass in a single blob. In order to conserve angular momentum,
    6·2 answers
  • 12in<br> 4in<br> 5in<br> a. 40in2<br> b. 216in<br> c. 256in<br> d. 176in?<br> What is the answer
    7·1 answer
  • CAN SOMEONE PLEASE TELL ME WHAT THIS WHEEL IS CALLED.WILL GIVE BRAINLIEST
    9·2 answers
  • What is the golden rule of lightning safety? (A.Don't stand under trees). (B.Avoid using electronics,)(C.Stay avvay from open sp
    13·1 answer
  • Calculate the<br> charge of 100 electrons (in coulombs)
    8·1 answer
  • Direct Democracy and Representative Democracy are alike because _______
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!