Consider the motion of the car before brakes are applied:
v₀ = maximum initial velocity of the car before the brakes are applied
t = reaction time = 0.50 s
x₀ = distance traveled by the car before brakes are applied
since car moves at constant speed before brakes are applied
Using the equation
x₀ = v₀ t
x₀ = v₀ (0.50)
Consider the motion after brakes are applied :
v₀ = initial velocity of the car before the brakes are applied
a = acceleration = - 10 m/s²
v = final velocity of the car after it comes to stop = 0 m/s
x = stopping distance = initial distance - distance traveled before applying the brakes = 38 - x₀ = 38 - v₀ (0.50)
Using the equation
v² = v²₀ + 2 a x
inserting the values
0² = v²₀ + 2 (- 10) (38 - v₀ (0.50))
v²₀ = 20 (38 - v₀ (0.50))
v₀ = 23 m/s
Thick lens will have shorter and consequently thin lens will have greater focal length. Because, For a thick lens, the optical path length of the light is more, than for a thin lens, thus, the bending of light will be more in case of a thicker lens. Consequently, it has a shorter focal length.
Answer:
A) 26V
Explanation:
(a) the potential difference between the plates
Initial capacitance can be calculated using below expresion
C1= A ε0/ d1
Where d1= distance between = 2.70 mm= 2.70× 10^-3 m
ε0= permittivity of space= 8.85× 10^-12 Fm^-1
A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2
If we substitute the values we
C1= A ε0/ d1
=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3
C1=2.589 ×10^-12 F= 2.59 pF
Initial charge can be determined using below expresion
q1= C1 × V1
V1=2.589 ×10^-12 F
V1= voltage=7.90 V
If we substitute we have
q1= 2.589 ×10^-12 × 7.90
q1= 20.45×10^-12C
20.45 pC
Final capacitance can be calculated as
C2= A ε0/ d2
d2=8.80 mm= /8.80× 10^-3
7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3
C1=0.794 ×10^-12 F= 0.794 pF
Final charge= initial charge
q2=q1 (since the battery is disconnected)
q2=q1= 20.45 pC
Final potential difference
V2= q/C2
= 20.45/0.794
= 26V
Answer: a) 12857.1 m/s/s b) 578.6 N
Explanation:
Impulse = change in momentum
Ft = mV2 - mV1
V = AT, 45 / .0035 = 12857.1 m/s/s
(b) .045 x 12857.1 = 578.6 N