<span>If a molecule wants to interact with an electric field. it should have a permanent dipole momentum. so first check the polarity. for example CH4 is not polar. CH2Cl2 is polar (so yes), H3O)+ is obvious that is polar. H2O yes. C2H2Cl2 in trans form is not polar but in cis form yes. CO2 is non-polar. Ozone is polar. </span>
Answer:
Rank in increasing order of effective nuclear charge:
Explanation:
This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.
<u>1) Effective nuclear charge definitions</u>
- While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.
- Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.
<u><em>2) Z eff for a F valence electron:</em></u>
- F's atomic number: Z = 9
- Total number of electrons: 9 (same numer of protons)
- Period: 17 (search in the periodic table or do the electron configuration)
- Number of valence electrons: 7 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
- Zeff = Z - S = 9 - 2 = 7
<u><em>3) Z eff for a Li valence eletron:</em></u>
- Li's atomic number: Z = 3
- Total number of electrons: 3 (same number of protons)
- Period: 1 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 1 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
- Z eff = Z - S = 3 - 2 = 1.
<em>4) Z eff for a Be valence eletron:</em>
- Be's atomic number: Z = 4
- Total number of electrons: 4 (same number of protons)
- Period: 2 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 2 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
- Z eff = Z - S = 4 - 2 = 2
<u><em>5) Z eff for a B valence eletron:</em></u>
- B's atomic number: Z = 5
- Total number of electrons: 5 (same number of protons)
- Period: 13 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 3 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
- Z eff = Z - S = 5 - 2 = 3
<u><em>6) Z eff for a N valence eletron:</em></u>
- N's atomic number: Z = 7
- Total number of electrons: 7 (same number of protons)
- Period: 15 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 5 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
- Z eff = Z - S = 7 - 2 = 5
<u><em>7) Summary (order):</em></u>
Atom Zeff for a valence electron
- <u>Conclusion</u>: the order is Li < Be < B < N < F
The greenhouse effect is a natural process that warms the Earth’s surface. When the Sun’s energy reaches the Earth’s atmosphere, some of it is reflected back to space and the rest is absorbed and re-radiated by greenhouse gases.
Greenhouse gases include water vapour, carbon dioxide, methane, nitrous oxide, ozone and some artificial chemicals such as chlorofluorocarbons (CFCs).
The absorbed energy warms the atmosphere and the surface of the Earth. This process maintains the Earth’s temperature at around 33 degrees Celsius warmer than it would otherwise be, allowing life on Earth to exist.
hope it helps you
follow for more………………………>_<
Answer:
The correct answer is Pu, 234.
Explanation:
In the given case, let us consider the reactant as X. Now the mass number (balanced) on both the sides will be,
Mass of X = Mass of Molybdenum + Mass of Tin + Mass of neutrons
M = 1 * 103 + 1 * 131 + 2 * 0
M = 234
Now the atomic number (balanced) on both the sides,
Atomic number of X = Atomic number of Molybdenum + Atomic number of Tin + Atomic number of neutrons
A = 1*42 + 1*50 + 2*1
A = 94
The atomic number 94 is for the element Plutonium, whose symbol is Pu. Thus, the reactant is 234-Pu.
Answer: X3+
Explanation:
Every atom aim to achieve stability by receiving electrons or giving their valence electrons in order to have a complete outermost shell of 2 (duplet) or 8 (octet structure).
In this case, the atom X will easily give off its three valence electrons to another atom(s), thereby forming a trivalent positive ion (X3+) with a stable duplet or octet structure (i.e an outermost shell with 2 or 8 electrons).
X --> X3+ + 3e-
Thus, due to the give away of three electrons (3e-), the atom X becomes X3+.