Answer:
Large molecules tend to have greater boiling points because the London dispersion forces are stronger within.
Explanation:
Answer:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
Explanation:
Chemical equation:
CO + O₂ → CO₂
Balanced chemical equation:
2CO + O₂ → 2CO₂
The standard enthalpy for the formation of CO = -110.5 kj/mol
The standard enthalpy for the formation of O₂ = 0 kj/mol
The standard enthalpy for the formation of CO₂ = -393.5 kj/mol
Now we will put the values in equation:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol + 0]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol]
ΔH0reaction = -283 kj/mol
Answer:
mass of HCl = 243.5426 grams
Explanation:
1- we will get the mass of the reacting gold:
volume of gold = length * width * height
volume of gold = 3.2 * 3.8 * 2.8 = 34.048 cm^3 = 34.048 ml<span>
density = mass / volume
Therefore:
mass = density * volume
mass of gold = </span>19.3 * 34.048 = 657.1264 grams
2- we will get the number of moles of the reacting gold:
number of moles = mass / molar mass
number of moles = 657.1264 / 196.96657
number of moles = 3.3362 moles
3- we will get the number of moles of the HCl:
First, we will balanced the given equation. The balanced equation will be as follows:
Au + 2HCl ......> AuCl2 + H2
This means that one mole of Au reacts with 2 moles of HCl.
Therefore 3.3362 moles will react with 2*3.3362 = 6.6724 moles of HCL
4- we will get the mass of the HCl:
From the periodic table:
molar mass of H = 1 gram
molar mass of Cl = 35.5 grams
Therefore:
molar mass of HCl = 1 + 35.5 = 36.5 grams/mole
number of moles = mass / molar mass
Therefore:
mass = number of moles * molar mass
mass of HCl = 6.6724 * 36.5
mass of HCl = 243.5426 grams
Hope this helps :)
Protons, nuetrons, and electrons
The answer would be 0.55 moles! good luck!