The movement of a fluid during convection is a circular/oval motion since the fluid at the top sinks and the fluid at the bottom rises.
Hope this helps :)
Answer 1) : 62.5 km/hour is the average velocity of the train.
2) The final velocity of the car at the end of 75 m is 14.69 m/s
Explanation:
1) Displacement of the train = 100 km + 150 km = 250 km
Total time train took =1 hour 15 min+ 45 min + 2 hours = 240 min = 4 hours
Average velocity=
62.5 km/hour is the average velocity of the train.
2) The acceleration of the car, a= 1.2 
Distance covered by the car,s = 75 m
Initial velocity of the car ,
= 6 m/s
Final velocity of thre car ,
=?
Using third equation of motion:


The final velocity of the car at the end of 75 m is 14.69 m/s
Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
Answer:
Part a)

Part b)

Explanation:
As we know that mountain climber is at rest so net force on it must be zero
So we will have force balance in X direction


now we will have force balance in Y direction


Part a)
so from above equations we have



Part b)
Now for tension in right string we will have


Answer:
a) F_net = 6.48 10⁻¹⁸ (
), b) x = 0.15 m
Explanation:
a) In this problem we use that the electric force is a vector, that charges of different signs attract and charges of the same sign repel.
The electric force is given by Coulomb's law
F =
Since when we have the two negative charges they repel each other and when we fear one negative and the other positive attract each other, the forces point towards the same side, which is why they must be added.
F_net= ∑ F = F₁ + F₂
let's locate a reference system in the load that is on the left side, the distances are
left side - electron r₁ = x
right side -electron r₂ = d-x
let's call the charge of the electron (q) and the fixed charge that has equal magnitude Q
we substitute
F_net = k q Q (
)
F _net = kqQ (
)
let's substitute the values
F_net = 9 10⁹ 1.6 10⁻¹⁹ 4.50 10⁻⁹ (
)
F_net = 6.48 10⁻¹⁸ (
)
now we can substitute the value of x from 0.05 m to 0.25 m, the easiest way to do this is in a spreadsheet, in the table the values of the distance (x) and the net force are given
x (m) F (N)
0.05 27.0 10-16
0.10 8.10 10-16
0.15 5.76 10-16
0.20 8.10 10-16
0.25 27.0 10-16
b) in the adjoint we can see a graph of the force against the distance, it can be seen that it has the shape of a parabola with a minimum close to x = 0.15 m