The alpha line in the Balmer series is the transition from n=3 to n=2 and with the wavelength of λ=656 nm = 6.56*10^-7 m. To get the frequency we need the formula: v=λ*f where v is the speed of light, λ is the wavelength and f is the frequency, or c=λ*f. c=3*10^8 m/s. To get the frequency: f=c/λ. Now we input the numbers: f=(3*10^8)/(6.56*10^-7)=4.57*10^14 Hz. So the frequency of the light from alpha line is f= 4.57*10^14 Hz.
Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by


F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
the number of neutrons may b 21
Answer:
12552 J or 3000 calories
Explanation:
Q = m × c × ∆T
Where;
Q = amount of heat energy (J)
m = mass of water (g)
c = specific heat capacity (4.184 J/g°C)
∆T = change in temperature
For 50mL of water, there are 50g, hence, m = 50g, c = 4.184 J/g°C, initial temperature = 0°C, final temperature = 60°C.
Q = m × c × ∆T
Q = 50 × 4.184 × (60 - 0)
Q = 209.2 × 60
Q = 12552 J
Hence, the amount of heat energy used to heat the water is 12552 J or 3000 calories
The electron's path in the magnetic field is a straight line when viewed from above.
In fact, the electron initially moves upward, while the magnetic field is directed horizontally. The electron experiences a force due to the magnetic field (the Lorentz force), whose direction is given by the right-hand rule:
- index finger --> initial direction of the electron (upward)
- middle finger --> direction of the magnetic field (horizontally, away from the observer)
- opposite direction to the thumb* --> direction of the force (horizontally, but perpendicular to the magnetic field, to the right)
This means that the Lorentz force makes the electron moving perpendicular to the magnetic field in the horizontal plane, and since the direction of the field is not changing, this force does not change its direction, so the electron moves in the same direction of the force in the horizontal plane (to the right), therefore following a straight line.
* the direction should be reversed because the charge is negative.