You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
Answer:
Meter
Explanation:
The competition between the three quarterbacks is with respect to how far the ball would be thrown by each person, which is the distance covered by the ball. The thrown ball is an example of projectile, which would move over a certain distance.
With respect to the measure to be used in the competition, the appropriate SI unit is meter. This is the measure of length or distance covered.
I believe the correct answer from the choices listed above is option B. The function of the pulley in this situation is to change the direction of the input force. <span> The </span>pulley<span> simply turns a force in one direction into a force in another direction. Hope this answers the question. Have a nice day.</span>
Answer:
A.c
Explanation:
The chromosphere is above the photosphere, the visible "surface" of the Sun. It lies below the solar corona, the Sun's upper atmosphere, which extends many thousands of kilometers above the chromosphere into space. The plasma (electrically charged gas) in the chromosphere has a very low density.
In basic terms it is the 2nd one out from the core.
Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2