1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PtichkaEL [24]
3 years ago
15

When hydrogen chloride is added to sodium hydroxide, it will produce water and what?

Physics
2 answers:
sveticcg [70]3 years ago
7 0

It will produce water and salt, as they are an acid and a base so a neutralization reaction will take place.

Hope it helps..

IRINA_888 [86]3 years ago
3 0

Answer: HCl+H2O→H3O++Cl- Hydrochloric acid in water increases the concentration of H3O+ ions and is therefore an acid. NaOH+H2O→Na++OH- Sodium hydroxide in water increases the concentration of OH- ions and is therefore a base.

You might be interested in
Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o
Harman [31]

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

6 0
2 years ago
Applications of pressure
Sunny_sXe [5.5K]
  • hydraulic press
  • hydraulic lift
  • hydraulic jack
  • hydraulic brake
3 0
1 year ago
A satellite is in a circular orbit 21000 km above the Earth’s surface; i.e., it moves on a circular path under the influence of
mina [271]

Answer:

(orbital speed of the satellite) V₀ = 3.818 km

Time (t) = 4.5 × 10⁴s

Explanation:

Given that:

The radius of the Earth is 6.37 × 10⁶ m;    &

the acceleration of gravity at the satellite’s altitude is 0.532655 m/s

We can calculate the orbital speed of the satellite by using the formula:

Orbital Speed (V₀) = √(r × g)

radius of the orbit (r) = 21000 km + 6.37 × 10⁶ m

                                  = (2.1 × 10⁷ + 6.37 × 10⁶) m

                                  = 27370000

                                  = 2.737 × 10⁷m

Orbital Speed (V₀) = √(r × g)

Orbital Speed (V₀) = √(2.737 × 10⁷  × 0.532655 )

                              = 3818.215

                              = 3.818 × 10³

                             = 3.818 Km

To find the time it takes to complete one orbit around the Earth; we use the formula:

Time (t) = 2 π × \frac{r}{V_o}

            = 2 × 3.14 × \frac{2.737*10^7}{3.818*10^3}

            = 45019.28

            = 4.5 × 10 ⁴ s

6 0
3 years ago
Which device uses a rotating magnetic field to produce an electric current?
Kay [80]
<span>The correct answer is C) a motor.
In particular, we are talking about an AC motor, which produces an alternating current. In an AC motor, a coil is immersed in a rotating magnetic field. Due to the motion of the magnetic field,the angle between the direction of the field and the surface enclosed by the coil changes. As a result, the magnetic flux through the coil changes over time (the magnetic flux is given by:
</span>\phi=BAcos\theta<span>
where B is the intensity of the magnetic field, A is the area enclosed by the coil and </span>\theta<span> is the angle between the direction of B and the perpendicular to the plane of the coil). For Faraday-Newmann-Lenz law, this change in flux induces an electromotive force (emf) into the coil, according to:
</span>emf=- \frac{d \Phi}{dt}<span>
 where the numerator is the variation of magnetic flux and dt is the time interval. This emf in the coil produced an electrical current in the circuit.</span>
7 0
2 years ago
Read 2 more answers
Wich advantage of reproduction does the graph shown
inn [45]

Answer:

No photo or graph is there

Explanation:

4 0
2 years ago
Other questions:
  • you push a ball to star it rolling along a "perfectly frictionless" surface. How far will the ball roll
    11·1 answer
  • Will an object with more mass roll faster down a hill?
    9·1 answer
  • Need Some Help Please :)
    11·2 answers
  • The passengers in a roller coaster car feel 50% heavier than their true weight as the car goes through a dip with a 10 m radius
    6·1 answer
  • A section of uniform pipe is bent into an upright U shape and partially filled with water, which can then oscillate back and for
    7·1 answer
  • Technician A says that the ABS electrohydraulic unit can be bled using bleeder screws and the manual method. Technician B says t
    9·1 answer
  • Differentiate between rest and motion.
    14·1 answer
  • If a microwave oven is rated at 2400 watts and it is connected at a 120 volt
    13·2 answers
  • PLEASE HELP ME I NEED IT!!
    9·2 answers
  • What feature of a planet's orbit does Kelper's first law of motion describe?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!