Answer:
80 m/s
Explanation:
Given:
a = -5 m/s²
v = 0 m/s
Δx = 640 m
Find: v₀
v² = v₀² + 2a(x − x₀)
(0 m/s)² = v₀² + 2(-5 m/s²) (640 m)
v₀ = 80 m/s
The mass of the aeroplane is 300,000 kg.
<h3>What is Newton's second law of motion?</h3>
It states that the force F is directly proportional to the acceleration a of the body and its mass.
The law is represented as
F =ma
where acceleration a = velocity change v / time interval t
Given is the aeroplane lands at a speed of 80 m/s. After landing, the aeroplane takes 28 s to decelerate to a speed of 10 m/s. The mean resultant force on the aeroplane as it decelerates is 750 000 N.
The force expression will be
F = mv/t
Substitute the values and we have
750000 = m x (80 -10)/ 28
750,000 = m x 2.5
m = 300,000 kg
Thus, the mass of the aeroplane is 300,000 kg.
Learn more about Newton's second law of motion.
brainly.com/question/13447525
#SPJ1
Answer:
The work done is 5136.88 J.
Explanation:
Given that,
n = 1.90 mol
Temperature = 296 K
If the initial volume is V then the final volume will be V/3.
We need to calculate the work done
Using formula of work done

Put the value into the formula



The Work done on the system.
Hence, The work done is 5136.88 J.
Answer: Heyaa! ~
State of the problem is that your friend routinely misses the school bus.
Explanation:
What are the causes for his missing the school bus:
- Not waking<em> early </em>enough
- Too<em> long</em> breakfast
- Too<em> far</em> to the bus stop.
- <em>Deliberately</em> tries to miss the bus.
Hopefully this helps you!
-Matthew ^^