Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.
Answer:
4.7 GHz
Explanation:
Applying,
v = λf................. Equation 1
Where v = velocity of the radio wave, λ = wavelength, f = frequency
make f the subject of the equation
f = v/λ.............. Equation 2
Note: A radio wave is an electromagnetic wave, as such it moves with a velocity of 3.00 x 10⁸ m/s
From the question,
Given: λ = 0.0644 meters
Constant: v = <em>3.00 x 10⁸ m/s</em>
Substitute these values into equation 2
f = (3.00 x 10⁸)/0.0644
f = 4.66×10⁹ Hz
f = 4.7 GHz
Well if you didn't you could make mistakes, which would lead ,in the best case, at a fail of the circuit , or if it goes out of control it could be dangerous
for example you have to know that the wires become hot and they loose their abbilitys as connecters(the hotter it will, the more energy you lose becouse the R will be bigger)
The period of the pendulum is the reciprocal of the frequency:

The period of the pendulum is given by

where L is the length of the pendulum, and g the acceleration of gravity. By re-arranging the formula and using the value of T we found before, we can calculate the length of the pendulum L: