<span>So the question is how does heat prefer to remain and to unscramble the letters ONMFRIU. The unscrambled letters mean: UNIFORM. The heat likes to remain uniform because thermodynamic systems always tend to reach thermal equilybrium after some period of time that is specific for each system. </span>
Answer:
F = 2π I R B
Explanation:
The magnetic force is described by the equation.
F = q v x B = i L x B
Where i is the current, L is a vector that points in the direction of the current (length) and B is the magnetic field.
This equation can be used in scalar form and the direction of the force found by the right hand ruler, the thumb goes in the direction of L, the fingers extended in the direction of B and the palm of the hand indicates the direction of the force if the load is positive
F = i L B sin θ
In this case the wire is in the xy plane and the z-axis field whereby they are perpendicular, θ = 90º and sin 90 = 1
F = i L B
The loop length is
L = 2π R
F = i 2π R B
F = 2π I R B
The force is in the loop
It’s c “ the same size as you are”
Answer:B
Explanation:
Initial velocity, u=0m/s
Distance,s=20m
a=+g=9.8m/s*s
Using v*v=u*u+2gs
v*v=0+2*9.8*20
v*v=392
v=19.8
When s=20m, v = 19.8m/s
Therefore when v = 10m/s, s= 10*20/19.8
s =10.1m
The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.