Answer:
neutron
Explanation
neutrons have no net charge
Answer:
8.7 L
Explanation:
T2(V1/T1) = V2
417.15 K(6.2 L/296.45 K) = 8.7 L
Remember to almost always change celcius to kelvin. Also, this is part of Charle's Law (temp and volume are proportional, so if temp increaces so must the volume or vice versa). Lastly, Charle's Law has the formula of V1/T1 = V2/T2. I just rearranged it to go along with your problem. Hence, the T2(V1/T1) = V2
The ML of 0.85 m NaOH required to titrate 25 ml of 0.72m hbr to the equivalence point is calculated as follows
calculate the moles of HBr used
moles = molarity x volume
25 x0.072/1000= 0.0018 moles
write the equation for reaction
NaOH + HBr = NaBr + H2O
from reacting equation the mole ratio between NaOH to HBr is 1:1 therefore the moles of NaOH = 0.0018 moles
volume = moles/molarity
0.0018/0.085 = 0.021 L in Ml = 0.021 x1000=21.18 Ml ofNaOH
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:
Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
Finally, we solve for the equilibrium concentration of ibuprofen:
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156