1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
3 years ago
11

A rectangular barge, 5.2 m long and 2.4 m wide, floats in fresh water. Suppose that a 410-kg crate of auto parts is loaded onto

the barge.
Part A) How much deeper does the barge float?
Physics
2 answers:
sesenic [268]3 years ago
4 0
<h2>Answer:</h2><h2>The depth of barge float=3 cm</h2><h2>Explanation:</h2>

Length of rectangular barge=5.2 m

Width of rectangular barge=2.4m

Mass of crate=410 kg

Let h be the height of barge float

Volume of barge float=l\times b\times h=5.2\times 2.4\times h=12.48h

Density of water=10^3kg/m^3

Weight of water displaced by barge=Buoyant force=-Weight of horse

Volume\;of\;water\times density\;of\;water\times g=410\times g

12.48h\times 1000=410

h=\frac{410}{12.48\times 1000}=0.03 m

1 m=100 cm

0.03 m=0.03\times 100=3cm

Hence, the depth of barge float=3 cm

<h2 />
xz_007 [3.2K]3 years ago
4 0

Answer:

Explanation:

length, l = 5.2 m

width, w = 2.4 m

density of water = 1000 kg/m³

Let the depth immersed in water is h.

So, According to the principle of flotation

Weight of the auto parts = Buoyant force acting on the barge

410 x g = 5.2 x 2.4 x h x 1000 x g

410 = 12480 h

h = 3.3 cm

You might be interested in
A physical property is a characteristic of a substance is one that _____.
Korolek [52]
A is the correct answer !!!
4 0
3 years ago
How do kinetic and potential energy transfer to one throughout a roller coaster ride?
mojhsa [17]

Answer:

As the cars ascend the next hill, some kinetic energy is transformed back into potential energy. Then, when the cars descend this hill, potential energy is again changed to kinetic energy. This conversion between potential and kinetic energy continues throughout the ride.

Explanation:

hope it helps U

6 0
2 years ago
A person of mass m is standing on the surface of the Earth, of mass M E . What is the acceleration that the Earth experiences du
Lana71 [14]

Answer:

a_E=\dfrac{Gm}{r^2}

Explanation:

M_E = Mass of the Earth =  5.972 × 10²⁴ kg

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

r = Radius of Earth = 6371000 m

m = Mass of person

The force on the person will balance the gravitational force

M_Ea_E=\dfrac{GmM_E}{r^2}\\\Rightarrow a_E=\dfrac{Gm}{r^2}

The acceleration that the Earth will feel is a_E=\dfrac{Gm}{r^2}

7 0
3 years ago
A box is initially sliding across a frictionless floor toward a spring which is attached to a wall. the box hits the end of the
Serjik [45]
The elastic potential energy of a spring is given by
U= \frac{1}{2}kx^2
where k is the spring's constant and x is the displacement with respect to the relaxed position of the spring.

The work done by the spring is the negative of the potential energy difference between the final and initial condition of the spring:
W=-\Delta U =  \frac{1}{2}kx_i^2 -  \frac{1}{2}kx_f^2

In our problem, initially the spring is uncompressed, so x_i=0. Therefore, the work done by the spring when it is compressed until x_f is
W=- \frac{1}{2}kx_f^2
And this value is actually negative, because the box is responsible for the spring's compression, so the work is done by the box.
8 0
4 years ago
Verify that the SI unit of impulse is the same as the SI unit of momentum.
lys-0071 [83]

Maybe this will help you out:

Momentum is calculate by the formula:

P = mv

Where:

P = momentum

m = mass      

v = velocity

The SI unit:

mass = kg\\ velocity = \dfrac{m}{s}

So the unit of momentum would be:

kg.\dfrac{m}{s}

Impulse is defined as the change in momentum or how much force changes momentum. It can be calculate with the formula:

I = FΔt

where:

I = impulse

F = Force

Δt = change in time

The SI unit:

F = Newtons (N) or kg.\dfrac{m}{s^{2} }

t = Seconds (s)

So the unit of impulse would be derived this way:

I = FΔt

I = kg.\dfrac{m}{s^{2} } x s

or

\dfrac{kg.m.s}{s^{2}} = \dfrac{kg.m.s}{s.s}

You can then cancel out one s each from the numerator and denominator and you'll be left with:

kg.\dfrac{m}{s}

So then:

Momentum:                             Impulse

kg.\dfrac{m}{s}                                       kg.\dfrac{m}{s}

4 0
4 years ago
Other questions:
  • The activation temperature of most ice-forming nuclei is ______ 0 oc.
    11·1 answer
  • At the equator earth rotates with a velocity of about 465 m/s.
    9·2 answers
  • What is the maximum value of the magnetic field at a<br> distance2.5m from a 100-W light bulb?
    8·1 answer
  • What is the longest wavelength in the molecule’s fluorescence spectrum?
    10·2 answers
  • Un auto de 2,300 kg está estacionado sobre una rampa inclinada 26.0°. Obtenga la tensión en la cadena.
    12·1 answer
  • Magnetic dipole X is fixed and magnetic dipole Y is free to move. Dipole Y will initially:
    8·1 answer
  • Please show the work and steps. The answer is (3.3 s, 15 m/s)
    7·1 answer
  • In your words, describe how you think life as a human might be different on a world orbiting around a dying star. Think about th
    14·1 answer
  • What is the initial vertical velocity?
    7·1 answer
  • (b) Can the speed of a rocket exceed the exhaust speed of the fuel? Explain.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!