Answer:
b.
Explanation:
-vesign shows the lens is <em><u>C</u></em><em><u>O</u></em><em><u>N</u></em><em><u>C</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em>
<em><u>f</u></em><em><u>=</u></em>1/power
The ideal mechanical advantage of a lever (IMA) is given by:

Where:
Le = Effort of the arm
Lr = Resistance arm.
Therefore, we can increase the force adventage by increasing the effort arm or reducing the load arm
Answer:
a. Make the effort length longer.
Answer:

Explanation:
The peak wavelength of the spectral distribution can be found by using Wien's displacement law:

where
is Wien's displacement constant
T is the absolute temperature
For the cosmic background radiation, the temperature is
T = 2.7 K
So, the corresponding peak wavelength is

Answer:

Explanation:
If the collision is elastic and exactly head-on, then we can use the law of momentum conservation for the motion of the 2 balls
Before the collision

After the collision

So using the law of momentum conservation


We can solve for the speed of ball 1 post collision in terms of others:

Their kinetic energy is also conserved before and after collision


From here we can plug in 






Answer: a) 19.21m b) 3.92secs
Explanation:
a) Maximum height reached by the object is the height reached by an object before falling freely under gravity.
Maximum height = U²/2g
U is the initial velocity = 19.6m/s
g is acceleration due to gravity = 10m/s²
Maximum Height = 19.6²/2(10)
H = 19.21m
b) The time elapsed before the stone hits the ground is the time of flight T= 2U/g
T= 2(19.6)/10
T = 39.2/10
Time elapsed is 3.92secs